
Crux: GPU-Efficient Communication Scheduling for Deep
Learning Training

Jiamin Cao∗, Yu Guan∗, Kun Qian, Jiaqi Gao, Wencong Xiao, Jianbo Dong, Binzhang Fu, Dennis Cai,
Ennan Zhai
Alibaba Cloud

Abstract

Deep learning training (DLT), e.g., large language model (LLM)
training, has become one of the most important services in multi-
tenant cloud computing. By deeply studying in-production DLT
jobs, we observed that communication contention among differ-
ent DLT jobs seriously influences the overall GPU computation
utilization, resulting in the low efficiency of the training cluster.
In this paper, we present Crux, a communication scheduler that
aims to maximize GPU computation utilization by mitigating the
communication contention among DLT jobs. Maximizing GPU com-
putation utilization for DLT, nevertheless, is NP-Complete; thus,
we formulate and prove a novel theorem to approach this goal by
GPU intensity-aware communication scheduling. Then, we propose
an approach that prioritizes the DLT flows with high GPU com-
putation intensity, reducing potential communication contention.
Our 96-GPU testbed experiments show that Crux improves 8.3%
to 14.8% GPU computation utilization. The large-scale production
trace-based simulation further shows that Crux increases GPU
computation utilization by up to 23% compared with alternatives
including Sincronia, TACCL, and CASSINI.

CCS Concepts

• Networks→ Data center networks; Network control algo-

rithms; Cloud computing; • Computing methodologies →
Machine learning.

Keywords

Communication Scheduling, Data Center Network, Deep Learning
ACM Reference Format:

Jiamin Cao∗, Yu Guan∗, Kun Qian, Jiaqi Gao, Wencong Xiao, Jianbo Dong,
Binzhang Fu, Dennis Cai, Ennan Zhai, Alibaba Cloud . 2024. Crux: GPU-
Efficient Communication Scheduling for Deep Learning Training. In ACM
SIGCOMM 2024 Conference (ACM SIGCOMM ’24), August 4–8, 2024, Sydney,
NSW, Australia. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/
3651890.3672239

1 INTRODUCTION

Deep learning has empowered many thriving fields. For example,
in recent months, the emergence of large language models (LLMs)
∗Both authors contributed equally to this paper.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0614-1/24/08
https://doi.org/10.1145/3651890.3672239

Network

GPUGPU GPU
…

PCIe

…

job1 job1 job1job2 job3 job3

NIC

Storage

CPU

Host 1

memory

GPUGPU GPU
…

PCIe

NIC

CPU

Host 2

memory

NVLinkNVLink

Figure 1: Allocation of GPUs on DLT jobs.

has revolutionized numerous natural language processing busi-
nesses such as Microsoft 365 Copilot [12], Firefly [8], and GitHub
Copilot [11]. Due to their resource-intensive nature, deep learn-
ing training (or DLT) jobs run on large-scale clusters with tens of
thousands of GPUs provided by cloud providers (e.g., AWS, Azure,
GCP, and Alibaba Cloud). Typically, a large number of DLT jobs
co-execute in the clusters and share GPUs, as shown in Figure 1.
GPU schedulers [36, 58] allocate GPUs for jobs.

As a production DLT service provider, our goal is to maximize
GPU computation utilization (or GPU utilization for short) of a
GPU cluster, as it directly affects training throughput and cluster
providers’ profits (e.g., training cost and customer expense). We
observed that running jobs on the same GPU cluster increases
the training time for each individual job (compared with the case
monopolizing cluster), along with decreased GPU utilization. For
example, the GPU utilization drops by 9.5% when co-executing
a GPT job and a BERT job on the same cluster. A 9.5% decrease
in GPU utilization means that 95 out of a 1,000-GPU cluster are
wasted, which translates to millions of dollars.

We, therefore, profiled the entire DLT lifecycle in §2.2, and found
that the performance interference between DLT jobs mainly stems
from the communication contention. Communication happens when
synchronizing model parameters, gradients, and optimizers among
GPUs that reside in the same host or different hosts [37, 62], as
shown in Figure 3. When co-executing multiple DLT jobs, we ob-
served a remarkable iteration time increase because of communica-
tion contention. As a result, overcoming communication contention
is vital for improving GPU utilization.
State of the arts. As shown in Figure 2, a comparison of state-
of-the-art efforts, the prior work does not focus on solving the
communication contention.

Job scheduler. Job schedulers optimize co-executed jobs by care-
fully allocatingGPUs to each job andmitigating resource contention
among them. Most job schedulers [20, 21, 30, 31, 33, 57, 58, 64]) treat
communication (including inter-host network links and intra-host
PCIe/NVLinks) as a blackbox and focus on computation contention
for GPU resources. A few job schedulers [61, 63] consider commu-
nication contention. However, in a DLT cluster, due to the unpre-
dictability of jobs (e.g., the scale and start/end time), job schedulers

https://doi.org/10.1145/3651890.3672239
https://doi.org/10.1145/3651890.3672239
https://doi.org/10.1145/3651890.3672239

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

Scheduler

Job Scheduler Communication Scheduler

General Co-flow Scheduler DLT Communication Scheduler

Intra DLT job
Communication Scheduler

Inter DLT job
Communication Scheduler

Unaware of DLT information
Coflow[22], Varys[25], Sincronia[16]…

Unaware of multi-job information
TACCL[53], NCCL[4], SYNDICATE[47], BytePS[37],

MXDAG[55], EchelonFlow[48], CadentFlow[38], Lina[42]…

CASSINI[51], Crux

Orthogonal to this work
Muri[63], Gandiva[57], Themis[46],

AntMan[58], Shockwave[64], hiveD[61]

Figure 2: The state-of-the-art DLT schedulers.

cannot completely avoid communication contention. This paper
focuses on solving communication contention with an existing job
schedule, and is thus orthogonal to job schedulers.

Communication scheduler. Communication schedulers address
the co-flow problem by determining flow priorities and selecting
paths for multiple network flows. General co-flow schedulers [16,
22, 25] do not account for DLT-specific characteristics (e.g., it-
erative and bursty data traffic, and communication-computation
overlapping), so their insights and optimization strategies cannot
work in this context. Most current DLT communication sched-
ulers [4, 37, 38, 42, 46–48, 53, 55] solve the co-flow problem within
a single DLT job. Their scheduling decisions are based on traffic
patterns of a single job and fail to consider inter-job contention.
CASSINI [51, 52] is an inter-job communication scheduler that
proactively reduces contention by predicting each job’s traffic pat-
terns and applying a corresponding time-dimension offset. How-
ever, in a multi-tenant GPU cluster, the traffic patterns of each job
are affected by the cluster itself and other jobs running concurrently.
Therefore, simply shifting jobs based on traffic pattern predictions
cannot eliminate communication contention.
Our approach: Crux. This paper proposes Crux, a communica-
tion scheduler to tackle inter-job communication contention. Crux
introduces the concept of GPU intensity as a measure of a job’s
impact on GPU utilization. Using GPU intensity, Crux selects paths
and assigns priorities for different jobs to mitigate communication
contention. We make the following contributions.

Contribution 1. Analysis of our multi-tenant production training
cluster reveals that 36.3% of DLT jobs may experience communica-
tion contention with other jobs, leading to significant GPU wastage.
We argue that inter-job communication scheduling is necessary to
improve GPU utilization (§2). We make our dataset publicly avail-
able at https://github.com/alibaba/alibaba-lingjun-dataset-2023 [9].

Contribution 2. We transform the challenge of maximizing GPU
utilization, which is an NP-Complete (NPC) problem, into a GPU in-
tensity-aware communication scheduling problem (§3). We design
a system, Crux, to optimize GPU utilization in a DLT cluster. Crux
introduces (1) a path selection algorithm to mitigate communica-
tion contention by choosing the least-congested path for jobs with
higher GPU intensity (§4.1), (2) a priority assignment algorithm
that considers DLT characteristics such as multiple iterations and
communication-computation overlapping (§4.2), and (3) an efficient
priority compression algorithm to adapt to limited priority levels
on practical NICs and switches (§4.3).

Contribution 3. Our experimental testbed, consisting of 96 Nvidia
A100 GPUs, demonstrated that Crux delivers up to a 14.8% increase

Switch

Job 2Job 1 Host

(a) Contention on network for-
warding paths

NIC

Job 2

Job 1

GPU

CPU

GPU

Job 3

(b) Contention on intra-host
PCIe links or NVLinks

Figure 3: Representative communication contention exam-

ples. Curves denote traffic. Red rectangles denote bottleneck

links where contention happens.

in GPU utilization and 33% improvement in end-to-end performance
with real-world models (e.g., GPT, BERT, and ResNet) (§6.2). Our
production trace (2,000+ GPUs, 5,000+ jobs) based simulation indi-
cated that Crux improves GPU utilization by 5% to 23%, compared
with state-of-the-art solutions (Sincronia [16], CASSINI [51], and
TACCL [53]), under various cluster network architectures (§6.3).

2 BACKGROUND AND MOTIVATION

This section first describes the background of multi-tenant DLT
clusters (§2.1). Then, §2.2 shows the popularity of inter-job commu-
nication contention in the in-production cluster, illustrating how it
degrades GPU utilization and training throughput. §2.3 introduces
why using GPU utilization as the goal. §2.4 presents our motivation
to design an inter-job communication scheduler.

2.1 Background: Multi-Tenant DLT Clusters

Figure 1 presents a typical architecture of DLT clusters, including
a storage that maintains training data, hosts equipped with many
GPUs and CPUs, and a network (usually a multi-layer topology like
Clos [32]) connecting the above entities. Each host consolidates
multiple (e.g., eight) GPUs for computation, together with CPUs
and memory for data processing, and NICs for communication [27,
44]. The entities within hosts are connected by high bandwidth
proprietary links (e.g., NVLink) and PCIe fabric composed of PCIe
switches (PCIeSw for short). Communication traffic of a DLT job
usually needs to traverse NVLinks, PCIe links, and network links.

DLT jobs run for a large number of iterations to compute a pre-
trained model. To accelerate the training process, or to fit larger
models within the limited GPU memory, parallelism strategies
(e.g., data parallelism, pipeline parallelism, and tensor parallelism)
distribute computation overload to multiple GPUs. In each iteration,
GPUs communicate with each other to synchronize parameters,
gradients, or optimizers of DLT models by collective communi-
cation operations (e.g., AllReduce [49], Send/Recv, ReduceScatter,
AllGather, and AllToAll).

2.2 Inter-Job Communication Contention

Seriously Degrades GPU Utilization

We studied the DLT jobs during two weeks in Aug. 2023 on one
of our in-production DLT clusters [9]. This cluster contains more
than 2,000 GPUs interconnected by a Clos network with a 1:1 over-
subscription ratio, supporting more than 5,000 jobs. The models
trained on this cluster include large-scale models like LLMs and also
legacy models such as ResNet and BERT. Figure 4 shows that over
10% of jobs (belonging to GPT variant models) occupy aminimum of
128 GPUs, with the largest job consuming up to 512 GPUs. Figure 5

https://github.com/alibaba/alibaba-lingjun-dataset-2023

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

0 200 400
GPU Number

0.5

1.0

C
D

F

Figure 4: GPUs required by jobs in our cluster.

0 7 14
Time (Day)

0

20

N
um

be
r

(a) The number of concurrent jobs.

0 7 14
Time (Day)

0

1000
N

um
be

r

(b) The number of active GPUs.

Figure 5: The number of concurrent jobs and active GPUs in

our cluster over two weeks.

0 7 14
0

10

N
um

be
r Network

PCIe/NVL

0 7 14
Time (Day)

0.0

0.5

R
at

io

(a) The number and ratio of jobs under the
risk of communication contention.

0 7 14
0

1000

N
um

be
r Network

PCIe/NVL

0 7 14
Time (Day)

0.0

0.5

R
at

io

(b) The number and ratio of influenced
GPUs.

Figure 6: Popularity of communication contention.

1.5 2 2.5
Iteration Time (s)

0.0

0.5

1.0

C
D

F

Standalone
Co-execute

Figure 7: Impact of communication contention on iteration

time of GPT.

highlights the concurrent execution of multiple jobs in the cluster
over two weeks. In the peak hour, the number of concurrent jobs
exceeds 30, occupying 1,000+ GPUs. Our cluster adopts an intuitive
job scheduling approach which tries to allocate GPUs in the same
host or under the same switch to a job.
Prevalence of inter-job communication contention in GPU

clusters. Figure 6 shows the number of jobs and GPUs in our cluster
that is at risk of communication contention (i.e., sharing intra-host
or inter-host links with others). As shown in the figure, among all
jobs running in the cluster, 36.3% jobs (occupying 51% GPU) may
suffer from communication contention during the life cycle. Only a
minority of the contention occurs on intra-host PCIe links (as shown
in Figure 3(b)), which results from resource fragmentation caused
by the job scheduler’s GPU allocation policies. Most contention
occurs on network forwarding paths (as shown in Figure 3(a)). This
is because network switches typically use Equal Cost Multi-Path
(ECMP) -based forwarding by default, which inevitably leads to
hash collisions and hence network link contention.
Why communication contention generally exists. Designing
better job scheduling methods or increasing network capacities can

Computation Communication (data transmission)

Job 1 (1GPU)
Job 2 (10GPUs)

(a) Assign high priority to Job 1
10 GPUs waiting

Job 1 (1GPU)

Job 2 (10GPUs)
(b) Assign high priority to Job 2

1 GPU waiting

Figure 8: Example of why optimizing GPU utilization.

help ease communication contention but cannot eliminate it. For job
scheduling, the dynamic nature of jobs and their varying sizes can
cause resource fragmentation (i.e., resources are divided into smaller
chunks), which increases the chance of communication contention.
For example, a job may use GPU resources from several cluster units
(pods) but may not use each pod completely. If multiple jobs share
resources from the same pods, they would compete for the links
connecting the pods. As for network capacity, even in networks
with a 1:1 oversubscription, the communication contention may
still exist as hash collision can lead to uneven traffic across links.
Impact of inter-job communication contention on GPU uti-

lization. In our in-production GPU cluster, we sample a representa-
tive pair of jobs in communication contention and reproduce their
training processes. Our evaluation shows that such contention leads
to degradation in both GPU utilization and training throughput.

We run a 64-GPU large language model (a variant of GPT-3) and
a 16-GPU language model (BERT) for this measurement. 1 GPT is
distributed across eight hosts (H1 to H8) under two Top-of-Rack
(ToR) switches, i.e., four hosts under each switch. BERT is allocated
to four hosts (H9 to H12) under the same two ToR switches, i.e.,
using four GPUs in each host. They encounter communication con-
tention on links between ToR switches and aggregation switches in
their training processes. As shown in Figure 7, compared with exe-
cuting GPT alone, when we launch BERT together, GPT’s iteration
time increases by 11.0%, from 1.53s to 1.70s during contention. The
throughput of GPT and BERT reduces by 9.9% and 7.7%, respectively,
which results in 9.5% reduction in GPU utilization.

2.3 Goal: Optimizing GPU Utilization

As a global DLT training provider, our business shows that a GPU
cluster’s goal is to optimize its overall GPU utilization. This is
because the more computation (e.g., floating-point operations) a
cluster does, the greater profits the cluster provider can get. To do
more computation in a given time duration, the most insightful way
is to optimize the GPU utilization, benefiting the training through-
put of the entire cluster. Suppose an 8-GPU server priced at $40 per
hour. If a cluster has 10,000 GPUs, a 10% improvement in GPU uti-
lization equates to a daily cost saving of $120,000. The overall GPU
utilization, therefore, is the most important performance metric for
our GPU cluster, which should be optimized.

There have been efforts that aim to optimize the job completion
time [51, 64]. In the case of a single job, optimizing GPU utilization
is equivalent to optimizing job completion time (JCT). However, in
multi-DLT scenarios, naively optimizing JCT can lead to reduced
GPU utilization. For example, in Figure 8, when two jobs contend
over the same link, two different scheduling methods can result

1We apply the GPT-3 parameters from [13]. Considering training costs, we modify the
number of transformer layers from 96 to 24, and hidden size from 12288 to 1024.

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

in the same average JCT, but the overall GPU utilization of the
cluster can be completely different. Jobs with higher GPU work-
load usually have a greater impact on the overall GPU utilization,
and thus should be scheduled with higher priorities. Notice that
optimizing GPU utilization may introduce unfairness between jobs
with various GPU workload, but this side effect is not severe (§7).

2.4 Optimizing GPU Utilization via Scheduling

Inter-Job Communication Contention

Based on the above, communication contention between DLT jobs
significantly degrades both training performance and GPU utiliza-
tion.We, therefore, argue that an efficient communication scheduler
for multi-job DLT is crucial. This paper tries to schedule inter-job
communication for GPU clusters in two aspects.
Path selection. To reduce the probability of inter-job communica-
tion contention along network links, we select paths for each job
based on traffic patterns and topologies. Note that communication
within hosts typically uses the nearest NIC or NVLink directly for
optimal performance, and thus path selection is not needed.
Priority assignment. To minimize losses in GPU utilization when
communication contention is inevitable, Crux adopts a priority
assignment approach which prioritizes jobs with a larger impact
on GPU utilization.

3 METHODOLOGY AND SYSTEM OVERVIEW

This section presents our key methodology: maximizing GPU uti-
lization is equivalent to schedulingmore data flow of GPU-intensive
DLT jobs in the network (§3.1 and §3.2). Based on this methodology,
§3.3 presents the Crux’s system overview.

3.1 Problem and Goal

Suppose a GPU cluster is connected by a network with topology
𝐺 =< V, E >, where V is the set of GPUs and E is the set of links
(including network links and intra-host links). The bandwidth of
each link 𝑒 ∈ E is denoted by 𝐵𝑒 .

J denotes a set of iterative DLT jobs in this cluster. Each job
𝑗 ∈ J occupies some GPUs in V. In each iteration, job 𝑗 generates
computation workload𝑊𝑗 (in floating-point operations), which is
distributed across GPUs it occupies. Meanwhile, job 𝑗 generates
a certain amount of network traffic. We define 𝑀𝑗,𝑒 as the traffic
produced by job 𝑗 for link 𝑒 in each iteration. Depending on par-
allelism strategies, a job’s computation and communication may
overlap with complex patterns (especially for large-scale DLT jobs).

Definition 1. GPU utilization. In a given time period𝑇 , if GPU
𝑣 processes computation workload 𝐿𝑣 , the overall GPU utilization𝑈𝑇
of this GPU cluster is given by:

𝑈𝑇 =
∑︁
𝑣∈V

𝐿𝑣 (1)

Our goal is thus to maximize𝑈𝑇 , by carefully scheduling the data
flow of each DLT job (e.g., by path selection or priority assignment)
to avoid communication contention between them.

3.2 Deriving GPU Utilization Optimization to

Flow Scheduling: A Single Link Case

Mathematically, the problem of maximizing𝑈𝑇 is a more complex
version of maximum multi-commodity flow problem [14], an NPC

𝑡

𝑓(𝑡)

Job1
Job2

Job3

Job1
Job2

𝐹!		(≈ 𝑈!)

0
𝑇

𝐼"

𝐼#

𝐼$

Figure 9: Deriving GPU utilization to a flow scheduling prob-

lem. Each rectangle is a job’s flow scheduling. Its width indi-

cates the flow transmission duration and its height indicates

GPU intensity. The total area (enclosed by dotted line) is 𝐹𝑇 ,

proved equivalent to𝑈𝑇 .

problem.2 Moreover, in our problem, each job is a DLT job with com-
plex computation and communication behaviors, rather than a pure
flow-transmission job whose transmission can be fully controlled.
This adds further difficulty to communication scheduling.

To solve this complex problem, we first introduce a new concept
called GPU intensity, which reflects a job’s impact on GPU utiliza-
tion. As will be introduced in §5, the GPU intensity of a job can be
obtained through measurement in the first few iterations of a job.

Definition 2. GPU intensity of job 𝑗 :

𝐼 𝑗 =
𝑊𝑗

𝑡 𝑗
(2)

where 𝑡 𝑗 is the maximum time a job’s traffic takes to traverse
any link 𝑒 in E, calculated as 𝑡 𝑗 = max𝑒∈E

𝑀𝑗,𝑒

𝐵𝑒
.

𝐼 𝑗 indicates that, regardless of how communication and compu-
tation are overlapped, job 𝑗 is always able to do𝑊𝑗 computa-
tion after 𝑡 𝑗 communication. Prioritizing the traffic of jobs with
higher 𝐼 𝑗 is beneficial, as it unblocks more computation, thus
improving GPU utilization.

We first consider a simple single-link scenario and prove that
maximizing 𝑈𝑇 is equivalent to maximizing the sum of GPU inten-
sity of jobs on a given link. Specifically, we focus on a link 𝑒0 with
a constant bandwidth 𝐵𝑒0 . For other links 𝑒 ∈ E\𝑒0, 𝐵𝑒 = ∞. In this
setting, the GPU utilization is affected by 𝑒0.

Let ℎ(𝑡) represent the jobs whose traffic is occupying link 𝑒0
at time 𝑡 , with ℎ(𝑡) = ∅ indicating the link is idle. We define 𝑓 (𝑡)
to reflect the intensity of the job occupying the link at time 𝑡 as

follows: 𝑓 (𝑡) =
{
𝐼ℎ (𝑡) ℎ(𝑡) ≠ ∅

0 ℎ(𝑡) = ∅ , and 𝐹𝑇 =
∫
𝑡 ∈𝑇 𝑓 (𝑡). Thus, 𝐹𝑇

represents the total GPU intensity of all jobs transmitted by link 𝑒0
during time period 𝑇 , as shown in Figure 9. Then we can deduce
Theorem 1, which is proved in Appendix A.

Theorem 1. lim |𝑇 |→∞
𝐹𝑇
𝑈𝑇

= 1

2In the maximum multi-commodity flow problem, a network (where each link has a
bandwidth constraint) needs to transfer data for multiple jobs. For each job, one path
from a source to a destination must be assigned, to transfer arbitrary data size. The
goal is to maximize the total amount of data the network can transfer. Our problem
is more challenging in two aspects: (1) each job usually has multiple sources and
destinations, and (2) our objective is to maximize total GPU utilization, which can be
regarded as a weighted average of the data transferred for each job (see GPU intensity
in Definition 2). Our problem can be strictly reduced to a maximum multi-commodity
flow problem when each job has only one pair of source and destination, and all jobs
have exactly the same computation-communication ratio. Thus, our problem is strictly
no easier than the maximum multi-commodity flow problem.

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

In a long time duration 𝑇 , maximizing𝑈𝑇 is equivalent to max-
imizing 𝐹𝑇 , i.e., the sum of GPU intensity of all jobs transmitted
by the link.

Based on the above, a job with higher GPU intensity is more
important in communication scheduling.

3.3 Extending to Networks: Crux Overview

In this section we first extend the insight we obtained from the case
of one single link (Theorem 1 in §3.2) to a whole network topology,
and then present an overview of Crux, which applies our insight
in practical GPU cluster networks.
Extending Theorem 1 to complex network topologies. When
multiple DLT jobs run concurrently in a GPU cluster with com-
plex network topology, the communication throughput for each
job during contention is exclusively determined by the bandwidth
allocation of the most congested link, i.e. the bottleneck link. If
we consider the bandwidth of all other links to be infinite, since
the bandwidth of the bottleneck link remains unchanged, the com-
munication performance of each job remains the same. Then the
complex topology becomes identical to the single-link scenario
described in §3.2 (𝑒0 corresponds to the bottleneck link). Therefore,
the conclusions of §3.2 still hold in practical network environments.
Utilizing Theorem1 in communication scheduling. In a cluster
network, based on Theorem 1, the ideal scheduling is to keep the
network transmitting data from the most GPU-intensive jobs at
100% time (e.g., always scheduling job 1 in duration 𝑇 in Figure 9).

However, it is not trivial to utilize this insight in a real-world
DLT cluster. First, each DLT job generates data flow only part of
the time and in part of network paths, following its traffic pattern.
An adequate scheduler should prioritize GPU-intensive jobs while
making full utilization of the GPU cluster network. Furthermore,
commodity GPU clusters provide limited functions for user-defined
traffic scheduling. For example, ECMP supports limited path se-
lection based on 5-tuple, and Differentiated Services Code Point
(DSCP) only supports a few unified and limited levels of job priori-
ties across the entire cluster network. Both the problem complexity
and practical constraints set further obstacles to implementing ideal
communication scheduling.

Our approach, Crux, is designed to bridge this gap. Crux uti-
lizes the concept of GPU intensity in practical flow scheduling
mechanisms (e.g., path selection and priority assignment), trying
to improve GPU utilization in DLT clusters. Crux proposes three
techniques, illustrated in Figure 10:
• GPU intensity-based path selection (§4.1). Since contention
between GPU-intensive jobs degrades overall GPU utilization
more severely, Crux presents a GPU intensity-based path se-
lection method. Crux tries to select different paths for GPU-
intensive jobs to avoid contention, and is more tolerant of con-
tention between jobs with lower GPU intensity.
• Priority assignmentwith consideration of DLT characteris-

tics (§4.2). Due to the characteristics of DLT jobs (e.g., multiple
iterations and communication-computation overlap), directly
assigning priorities to jobs based on their GPU intensity may
produce uneven network overload in time-dimension (e.g., some-
times there are multiple jobs contending for the network, and

Path Selection
(§4.1)

Priority Assignment
Priority

Compression (§4.3)
Priority

Assignment (§4.2)

GPU Intensity (§3.2)Key Factor

Flow
Scheduling
Mechanism

Figure 10: Crux Overview.

sometimes the network is idle for a while), leading to subopti-
mal performance. Crux analyzes how these new characteristics
influence network overload patterns, and presents a novel math-
ematical model to fine-tune the priority assignment.
• Compressing priorities to limited levels (§4.3). Because NICs
and switches support limited priority levels (e.g., no more than
8, which is much less than the number of jobs), after globally
unique priority assignment, Crux has to compress original pri-
orities to limited priority levels, resulting in multiple jobs being
mapped to the same level. This compression unavoidably leads
to performance loss. Fortunately, we find that a well-designed
priority compression significantly reduces this side effect. For
jobs that are not GPU-intensive or do not share network paths,
compressing their priority differences has a limited (or even
no) side-effect on GPU utilization. Based on this insight, Crux
selectively compresses these unimportant priority differences.

4 Crux DESIGN

This section presents our design of Crux. §4.1 proposes Crux’s
path selection method. §4.2 assigns a unique priority to each job
in the cluster. §4.3 describes how to compress the assigned prior-
ities to limited priority levels, to make it deployable in practical
DLT clusters. §4.4 validates the effectiveness of Crux using micro-
benchmark evaluation.

4.1 GPU Intensity-Based Path Selection

Modern DLT clusters (e.g., Clos) offer redundant links between
multi-layer network switches (e.g., ToR, aggregation, and core
switch) and utilize ECMP-based hash mechanisms [2] to select
random paths for DLT jobs. The network’s load balance is then
decided by the hash algorithm. As the number of concurrent jobs
increases, hash collision is unavoidable. Consequently, careful path
selection becomes critical to mitigate communication contention.
Why GPU intensity matters in path selection? As illustrated
in §3.2, jobs with higher GPU intensity are more dominant for
the cluster’s GPU utilization. Therefore, the key idea of Crux’s
path selection is to ensure that jobs with higher GPU intensity are
not affected by communication contention. When high-intensity
jobs compete with low-intensity jobs for the same link, as will
be introduced later, high-intensity jobs generally have higher pri-
ority, so they will not be impacted by jobs with lower intensity.
Consequently, the main challenge in path selection is to avoid com-
munication contention between high-intensity jobs.
Our approach. Crux proposes GPU intensity-based path selection.
For multiple DLT jobs in the cluster, Crux makes path selection
starting from the most GPU-intensive jobs to the least. For each job,
Crux selects the least congested path from all available options at
that moment. This strategy tries to select distinct paths for GPU-
intensive jobs from one another. Crux refreshes all path selections
in dynamic job arrivals/completions (see §5).

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

Job 1 (10GPUs)

Job 2 (10GPUs)

(b) Assign high priority to Job 2

Time (s)0 1 2 3 4 5 6 7 8 9 10 11 12

Job 1 (10GPUs)

Job 2 (10GPUs)

(a) Assign high priority to Job 1

GPU Computation

Communication

GPU Idle3s 3s 3s

2s 2s 2s

4s 4s

1s 1s 1s 1s 1s 1s

Figure 11: [Example 1] Iteration time influences priority.

Time (s)0 1 2 3 4 5 6 7 8 9 10 11 12

(a) Assign high priority to Job 2

Job 1 (2GPUs)

Job 2 (12GPUs) 2s 2s 2s

(a) Assign high priority to Job 1

Job 1 (2GPUs)

Job 2 (12GPUs) 3s 3s 1s

GPU Computation

Communication

GPU Idle

Figure 12: [Example 2] Computation-communication overlap

influences priority.

4.2 Priority Assignment

This section assigns a unique priority 𝑃 𝑗 to each job 𝑗 . We hope
that when there is communication contention between 𝑗1 and 𝑗2:

(1) If 𝑃 𝑗1 > 𝑃 𝑗2 , prioritizing the communication of 𝑗1 first should
result in higher overall GPU utilization.

(2) If 𝑃 𝑗1 = 𝑃 𝑗2 , prioritizing the communication of either 𝑗1 or 𝑗2
should result in the same GPU utilization.
Why GPU intensity should be fine-tuned in priority assign-

ment? Based on §3, we should always assign high priorities to
GPU-intensive jobs. However, assigning priorities only based on
GPU intensity (e.g., 𝑃 𝑗 ≜ 𝐼 𝑗) may lead to uneven network over-
load in time-dimension (e.g., sometimes there are multiple jobs
contending for the network, and sometimes the network is idle for
a while), similarly observed in CASSINI [51]. We will show that this
is because DLT jobs have different iteration times and computation-
communication overlap behaviors. Based on these new characteris-
tics, fine-tuning our priority assignment can stagger the data-flow
of different jobs, thereby achieving better performance.

We begin with two examples:

Example 1. Job 1 (𝑊1 = 10Gflops, 𝑡1 = 2𝑠) and Job 2 (𝑊2 = 5Gflops,
𝑡2 = 1𝑠) compete for one link. Both jobs require 10 GPUs. Job 1
has a large computation overload, so its computation time (2s) is
twice that of Job 2 (1s). Based on Equation (2), they have equal
GPU intensity. As shown in Figure 11, if Job 1 is prioritized, GPUs
of Job 1 are idle for 6 seconds, and GPUs of Job 2 are idle for 9
seconds, so the overall GPU utilization is 37.5%. Conversely, if Job 2
is prioritized, the GPU utilization can reach 41.7%. This is because
prioritizing a shorter-iteration job better utilizes the bandwidth to
transmit more data, improving overall GPU utilization.

Example 2. Job 1 (𝑊1 = 10Gflops, 𝑡1 = 1𝑠) and Job 2 (𝑊2 = 30Gflops,
𝑡2 = 3𝑠) compete for one link. Job 1 requires 2 GPUs and takes 4s for
computation per iteration. Job 2 requires 12 GPUs. Since Job 2 has 3x
more computation overload but uses 6xmore GPUs, its computation
time is half that of Job 1, taking only 2s. Based on Equation (2), they

have equal GPU intensity. For simplicity, we assume a job starts
communication when it finishes 50% computation of one iteration
(e.g., after forward propagation which consists of about half of
the computation, data communication can overlap with backward
propagation). As shown in Figure 12, if Job 1 is prioritized, 12 GPUs
of Job 2 are idle for 7 seconds; If Job 2 is prioritized, they are idle
for only 6 seconds. This is because communication in Job 1 can be
fully overlapped by its computation. Communication delay for ≤ 1s
does not reduce its training throughput or GPU utilization. On the
contrary, Job 2 is highly sensitive to communication delay since its
communication can not be fully overlapped.
Modeling DLT characteristics in priority assignment. To mea-
sure how DLT characteristics affect priorities, we propose correc-
tion factor 𝑘 𝑗 for each job 𝑗 , bridging the gap between 𝐼 𝑗 and 𝑃 𝑗 :

𝑃 𝑗 ≜ 𝑘 𝑗 𝐼 𝑗 (3)

Now, we compute the correction factor for each job. First, sup-
pose job 𝑗 is the job that generates the most network traffic in the
cluster network. We define 𝑘 𝑗 = 1 and call job 𝑗 the reference job.
Then, correction factors of other jobs are computed by making
comparisons with this reference job (as the reference job is most
likely to contend against other jobs), like Figure 11 and 12.

For example, in Figure 11, suppose Job 1 is the reference job (i.e.,
𝑃 𝑗1 = 1), given the per-iteration computation/communication time
of the two jobs, we can try both priority assignments and make a
comparison.When Job 1 is prioritized, the network spends 6 seconds
transmitting Job 1’s data and 3 seconds on Job 2’s. Conversely, when
Job 2 is prioritized, the network transmits 4 seconds for Job 1’s data
and 6 seconds for Job 2’s. According to the definition of priority,
if 𝑃 𝑗1 = 𝑃 𝑗2 , prioritizing Job 1 (transmit Job 1’s data for 2 more
seconds) or Job 2 (transmit Job 2’s data for 3 more seconds) should
yield the same computation overload. Based on Equation (2), Job 1
should have 3𝑠/2𝑠 = 1.5x GPU intensity of Job 2 (i.e., 𝐼 𝑗1 = 1.5𝐼 𝑗2).
Then, according to Equation (3), we have 𝑘 𝑗2 = 1.5𝑘 𝑗1 = 1.5.

The definition of correction factor does not depend on which
characteristic we focus on (e.g., iteration time). We can also mea-
sure the impact of computation-communication overlap on priority
assignment in a similar method. In general, we can always compute
the correction factor of one job related to another. The difference
between two jobs in iteration length, computation-communication
overlap, and maybe other aspects, are included in the correction
factor. Note that the correction factor is different when selecting a
different job as the reference job, and we will discuss in §7.1.

4.3 Priority Compression

In real-world GPU clusters, NICs and switches typically support
limited (e.g., 8) physical priority levels. Some of these levels are
already reserved for dedicated usages (e.g., TCP traffic, instruction
transmission, and proactive network diagnosis). Thus, priority com-
pression is needed, i.e., some jobs may have to be assigned to the
same priority, leading to random communication contention. The
challenge lies in how to compress priorities to reduce the GPU
utilization loss caused by such random communication contention.
Example.As shown in Figure 13, Job 1-4 have decreasing priorities,
and we need to map them onto two priority levels, i.e., high (1)
and low (0). Sincronia [16] assigns Job 1 to the high level, and
others to the low level. Varys [25] takes a more balanced priority

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

Sincronia
Job 1 Job 2 Job 3 Job 4

1 0 00
1 1 00Varys

Optimal 1 0 01

Figure 13: Priority compression methods for existing work

and the optimal compression. The explosion mark indicates

contention between jobs of the same priority level.

Job 1

Job 2

Job 3 Job 4

Job 5

Priority=5

Priority=4

Priority=3

Priority=2

Priority=1

Figure 14: Example for priority compression. The DAG de-

scribes communication contention among jobs.

Job 1
Priority=5

Job 2
Priority=2

Job 3
Priority=1

Job 4
Priority=3

Job 5
Priority=4

Figure 15: A topological order of DAG in Figure 14. The dotted

line shows a corresponding 3-Cut, equivalent to the 3-Cut

for DAG in Figure 14.

compression method, assigning Job 1-2 to the high level, and Job 3-
4 to the low level. Both strategies are reasonable in the absence
of further information. However, if we know that Job 1-2 share
the same link, while Job 3-4 share another link, and there is no
contention on other links, the optimal priority compression would
assign Job 1,3 to the high level, and Job 2,4 to the low level.

Starting from this example, to further reduce the performance
loss in priority compression, we also need to consider the GPU
intensity of each job, and how seriously they contend over the links
with others. Our simulation shows that with careful priority com-
pression, the GPU utilization loss caused by random compression
can be significantly reduced (see §4.4).
Our approach. We model the problem of minimizing GPU utiliza-
tion loss in priority compression as a K-cut problem in a directed
acyclic graph (DAG) and propose an effective algorithm to solve it.
Problem definition and modeling. A valid priority compression
can be defined as partitioning job set J into 𝐾 subsets {J1, J2, ..., J𝐾 },
with priority level 𝑃 (J1) > 𝑃 (J2) > ... > 𝑃 (J𝐾), where 𝐾 is the
number of available priority levels. Jobs in the same subset have
the same priority level. To utilize our priority assignment in §4.2,
a valid compression should ensure that, if two jobs share the same
links, the one with a higher priority should be mapped to a priority
level that is not lower than the other.

Crux employs a DAG to model the potential GPU utilization loss
for each pair of DLT jobs in priority compression, based on GPU
intensity of each job. Define DAG 𝐷 =< V𝐷 , E𝐷 >, where each
node in V𝐷 represents a job in J, and each edge in E𝐷 represents the
contention between two jobs. For any two jobs 𝑗1, 𝑗2 ∈ V𝐷 which
share the same network links, assuming 𝑗1 is assigned a higher
priority in §4.2, there will be an edge 𝑒 from 𝑗1 to 𝑗2. The weight
of this edge,𝑤𝑒 or𝑤 𝑗1, 𝑗2 , is determined by GPU intensity of 𝑗1, i.e.,
𝐼 𝑗1 . We call 𝐷 Communication Contention DAG. Figure 14 gives
an example. In this case, the optimal solution is mapping Job 1 to

Algorithm 1: Priority Compression

Input: D =< 𝑉𝐷 , 𝐸𝐷 >: Communication Contention DAG.
Output:𝑂𝑢𝑡𝑝𝑢𝑡𝐶𝑢𝑡 : a K-Cut for DAG 𝐷 .

1 for 𝑐𝑎𝑠𝑒𝑠 ← 1 𝑡𝑜 𝑚 do

2 {𝑎1, 𝑎2, ..., 𝑎𝑛 } = RandomTopoOrder(𝐷)
#Preprocessing matrix C

3 for 𝑖 ← 1 𝑡𝑜 𝑛 do

4 for 𝑘 ← 1 𝑡𝑜 𝐾 do

5 𝑆𝑖,𝑘 ← 𝑆𝑖−1,𝑘 + 𝑆𝑖,𝑘−1 − 𝑆𝑖−1,𝑘−1 + 𝑤𝑎𝑖 ,𝑎𝑘
6 for 𝑖 ← 1 𝑡𝑜 𝑛 do

7 for 𝑗 ← 𝑖 + 1 𝑡𝑜 𝑛 do

8 𝐶𝑖,𝑗 ← 𝑆𝑖,𝑗 − 𝑆𝑖,𝑖

#Compute f(n,K) by dynamic programming
9 for 𝑖 ← 1 𝑡𝑜 𝑛 do

10 for 𝑘 ← 1 𝑡𝑜 𝐾 do

11 𝑓 (𝑖, 𝑘) ← max𝑔 (𝑖−1,𝑘) ≤ 𝑗<𝑖 𝑓 (𝑗, 𝑘 − 1) +𝐶 𝑗,𝑖
12 𝑔 (𝑖, 𝑘) ← 𝑎𝑟𝑔max𝑔 (𝑖−1,𝑘) ≤ 𝑗<𝑖 𝑓 (𝑗, 𝑘 − 1) +𝐶 𝑗,𝑖
13 𝐶𝑢𝑡 (𝑖, 𝑘) ←

𝐶𝑢𝑡 (𝑔 (𝑖, 𝑘), 𝑘 − 1) + {𝑎𝑔 (𝑖,𝑘)+1, 𝑎𝑔 (𝑖,𝑘)+2, ..., 𝑎𝑖 }

#Update the current MaxCut
14 if 𝑓 (𝑛,𝐾) > 𝑀𝑎𝑥𝐶𝑢𝑡 then
15 𝑀𝑎𝑥𝐶𝑢𝑡 ← 𝑓 (𝑛,𝐾)
16 𝑂𝑢𝑡𝑝𝑢𝑡𝐶𝑢𝑡 ← 𝐶𝑢𝑡 (𝑛,𝐾)

a high priority, Job 2&5 to medium priorities, and Job 3&4 to low
priorities. Such partition cuts all edges in the DAG.

The insight of this model is that, each edge in DAG 𝐷 describes
the GPU utilization loss if the two connected jobs are assigned the
same priority level. If there is an edge from 𝑗1 to 𝑗2, it indicates
potential communication contention between them. If 𝑗1 and 𝑗2
are mapped to different priority levels, only 𝑗2 suffers from GPU
utilization loss since its communication is preempted by 𝑗1. If they
are mapped to the same level, both jobs suffer from GPU utilization
loss due to contention. The difference between these two cases is
whether 𝑗1 loses GPU utilization. Thus, the weight of𝑤 𝑗1, 𝑗2 equals
to 𝐼 𝑗1 , since the loss is proportional to 𝑗1’s GPU intensity.
Optimization goal. The objective is to minimize GPU utilization
loss during compression. Given a valid priority compression for J,
the corresponding node set V𝐷 of DAG 𝐷 is also partitioned into
𝐾 subsets. For each edge 𝑒 ∈ E𝐷 , if the two corresponding nodes
are in the same subset, GPU utilization is lost by 𝑤𝑒 . Therefore,
the optimal partition should minimize the total weight of links
whose nodes are in the same subset. In other words, the goal is to
maximize the link cut by 𝐾-partitioning.

Thus, our priority compression problem is equivalent to the Max
K-Cut problem in DAG: dividing𝑉𝐷 to𝑉1,𝑉2, ...,𝑉𝐾 , s.t. there is no
edge from 𝑉𝑖 to 𝑉𝑗 for 𝑖 > 𝑗 . The goal is to maximize the sum of
edge weights from 𝑉𝑖 to 𝑉𝑗 for all 𝑖 < 𝑗 .
Algorithm: approximating max K-Cut for DAG. Although
finding the optimal K-Cut for DAG𝐷 is difficult, the problem can be
solved in the constrained solution space if we impose constraints on
the original problem. We first solve the problem in the constrained
solution space, then expend the space to approximate the original
solution space, and finally approximate the optimal solution.

Suppose sequence {𝑎𝑛} = {𝑎1, 𝑎2, ..., 𝑎𝑛} is a topological order of
DAG𝐷 , where𝑛 = |V𝐷 |. Then {𝑎𝑛} can be partitioned to𝐾 consecu-
tive subsequences,𝐵1, 𝐵2, ..., 𝐵𝐾 , where𝐵1 = {𝑎1, 𝑎2, ..., 𝑎𝑖1 }, ..., 𝐵𝐾 =

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

0.0 0.5 1.0
Relative error

0.0

0.5

1.0

C
D

F

Crux
TACCL*
Sincronia
Varys

(a) Priority assignment of
Crux vs. baselines

0.0 0.5 1.0
Relative error

0.0

0.5

1.0

C
D

F

Crux
TACCL*

(b) Path selection of Crux
vs. TACCL*

0.0 0.5 1.0
Relative error

0.0

0.5

1.0

C
D

F

Crux
Sincronia

(c) Priority compression of
Crux vs. Sincronia

Figure 16: Relative error of Crux and baselines, compared

with the global optimal solution.

{𝑎𝑖𝐾−1+1, 𝑎𝑖𝐾−1+2, ..., 𝑎𝑛}. We call 𝐵1, 𝐵2, ..., 𝐵𝐾 a K-Cut of sequence
{𝑎𝑛}. There is a surjection from {𝑎𝑛}’s K-Cut to 𝐷’s K-Cut, illus-
trated in Figure 15, proved by Theorem 2 and 3 (Appendix B).

Compared with the Max K-Cut problem in DAG 𝐷 , it is much
easier to find the Max K-Cut for the sequence {𝑎𝑛}. Given a topo-
logical order {𝑎𝑛} of 𝐷 , we define 𝑓 (𝑖, 𝑘) as the max 𝑘-Cut for
{𝑎1, 𝑎2, ..., 𝑎𝑖 }. Then we have:

𝑓 (𝑖, 𝑘) = max
1≤ 𝑗<𝑖

𝑓 (𝑗, 𝑘 − 1) +𝐶 𝑗,𝑖 (4)
where 𝐶 𝑗,𝑖 denotes the sum of edge weights from {𝑎1, .., 𝑎 𝑗 } to
{𝑎 𝑗+1, .., 𝑎𝑖 } in DAG 𝐷 .

Then 𝑓 (𝑛, 𝐾) is Max K-Cut for {𝑎1, .., 𝑎𝑛}, and can be computed
using a dynamic programming algorithm. 𝑓 has 𝑛𝐾 states. Constant
matrix 𝐶 can be pre-computed in 𝑂 (𝑛2). 𝑓 ’s state conversion is
𝑂 (𝑛), and can be optimized to 𝑂 (1), as the optimal choice 𝑗 in
𝑓 (𝑖, 𝑘)’s state conversion can be proven to be monotonic with 𝑖 (We
omit the proof due to space limit, see Quadrangle Inequalities [59]).
Therefore, given a topological order sequence, we can get its max
K-cut in 𝑂 (𝑛2).

Back to the original problem in DAG. Since each topological
order of 𝐷 has its own optimal K-Cut, equivalent to the optimal
K-Cut in a constraint solution space, we approximate the global
Max K-Cut for DAG by sampling enough different topological order
sequences of 𝐷 .

Put it all together, the pseudocode of the priority compression
algorithm is shown in Algorithm 1. Crux generates𝑚 (in practice
we set𝑚 = 10) random topological orders of 𝐷 by Breadth First
Search [10] (line 1-2), computes the max K-Cut for each topological
order (line 3-13), and chooses the maximal one (line 14-16).

4.4 Effectiveness Validation

Due to the complexity of the problem, we can not prove the optimal-
ity of Crux mathematically. Instead, we present a microbenchmark
to compare each part of Crux design with the optimal scheduling
through simulation.
Simulation settings.We construct 1,500 small-scale cases to val-
idate the effectiveness of Crux. In each case, we have at most 20
hosts (each with 8 GPUs), connected by a 2-layer Clos network with
2-4 ToR switches and 2 aggregation switches. We define 5 different
DLT jobs running in this cluster and assign it with 3 priority levels.
Therefore, we need §4.1 to select paths, §4.2 to assign priorities
for each job, and §4.3 to finally compress 5 priorities to 3. In these
small-scale cases, we can get the global optimal priority assignment
and path selection by enumeration. Then we can compare Crux’s
scheduling with optimal scheduling.
Baselines. To better visualize our improvement compared with ex-
isting methods, we evaluate an intra-job communication scheduler

Converged Communication Library

Crux
Daemon

AllReduce AllToAll AllGather Send/Recv

Crux Transport

TCP RoCEv2 Infiniband DPDK

PyTorch TensorFlow X-DeepLearning

Figure 17: Crux implementation.

(i.e., TACCL [53]). Due to TACCL’s specification in intra-job com-
munication, we leverage its key insights and implement TACCL*
for inter-job communication scheduling.3 In priority assignment,
we evaluate Sincronia [16] and Varys [25]. In priority compression,
we evaluate Sincronias compression algorithm.

To make an ablation study, when evaluating one mechanism
(e.g., priority compression), we apply the optimal solution to the
other two scheduling mechanisms (e.g., optimal path selection and
priority assignment) for all methods.
Performance comparison with optimal. Figure 16 shows the
CDF of the error rate from optimal for each solution. Crux provides
97.69%, 97.24%, and 97.12% performance in path selection (§4.1),
priority assignment (§4.2), and priority compression (§4.3), com-
pared with optimal. In each part of Crux design, Crux is much
closer to the optimal performance compared with other solutions.
We discuss the limitations of Crux algorithms in §7.1.

5 IMPLEMENTATION

Figure 17 shows Crux’s implementation (7K lines of code) for
widely-usedDLT frameworks, including PyTorch [5], TensorFlow [15],
X-DeepLearning [7]. The converged communication library (CoCoLib)
supports RoCEv2 [6], TCP, etc.. CoCoLib provides collective com-
munication APIs (e.g., AllReduce) as well as the Send/Receive API,
and satisfies various DLT models. Jobs can use Crux by replacing
the original communication libraries with CoCoLib.

Crux Daemon (CD) and Crux Transport (CT) are two core
modules in Crux, which are deployed in each host in the cluster.
CD runs as a daemon process, collecting information and making
communication scheduling decisions. CT executes the scheduling
decisions. For efficiency, in each job, only a leader CDmakes sched-
uling decisions and synchronizes with others. In the real-world
deployment, Crux only costs <0.01% network bandwidth for these
information synchronizations and scheduling decisions.

In communication scheduling, Crux requires information on
the network topology (i.e., paths) and each active DLT job in the
cluster, and then executes scheduling decisions for each job. Now
we show that Crux can transparently do these processes, without
any modification of DLT model codes.
Path information probing. Crux requires path information for
path selection, including both intra-host and inter-host paths. For
intra-host paths (e.g., PCIe) paths, Crux directly uses existing tools
(Intel PCM [3] and AMD uProf [1]). For inter-host paths, Crux col-
lects path information between each pair of hosts by sending prob-
ing packets. Specifically, considering that GPU clusters typically
use ECMP [2] to forward flows through multiple candidate paths
by hashing the five-tuple, we need to find a suitable 16-bit UDP

3Based on TACCL’s insight on routing and scheduling, TACCL* selects the least
congested link for each job and prioritizes the trafficwith longer transmission distances.

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

source port for each candidate path. To achieve this, we can send
probing packets with varied source ports until all candidate paths
can be reached. In Crux, we employ INT [39] (widely deployed in
current switches [18, 43, 56]) to insert per-hop information into the
probing packets. Note that INT is not imperative, and we can obtain
path information through alternative methods, such as calculation
based on the hash algorithm.

Job informationmeasurement.Crux requires computation over-
load𝑊𝑗 and communication overload 𝑡 𝑗 of each job 𝑗 to compute
GPU intensity (Equation 2). To ensure accurate measurement of
computation and communication overload, Crux assigns a unique
highest priority to a job during profiling. This prevents this job from
contending with others. Then, Crux utilizes hardware monitoring
(e.g., GPU, NIC, and PCIe), to measure computation and communi-
cation overloads. For computation overload, Crux directly sums
up the GPU overload during a fixed monitoring period (e.g., 30s).
For communication overload, Crux sums up the duration of data
transfers. Both overloads are divided by the number of iterations
within that period to finally get the per-iteration overload𝑊𝑗 and 𝑡 𝑗 .
Crux employs a mathematical speculation to estimate the duration
of one iteration. Given that the communication pattern of a job is
consistent across iterations, Crux applies the Fourier Transform to
convert the communication from the time domain to the frequency
domain and then estimates the duration of a single iteration.

Execute scheduling decisions. Each time a new job arrives, Crux
first conducts the above probing and measurement processes for
the new job and then reassigns paths and priorities for all existing
jobs. To execute path selection, CTs invoke ibv_modify_qp to set
UDP source ports of RoCEv2 connections, and the packets will be
delivered via certain paths based on ECMP. To execute priority
assignment in inter-host networks, CTs set the IP traffic classes
corresponding to the assigned priority level via ibv_modify_qp to
enter different packet queues of NIC and switches. To execute intra-
host priority assignment, CDs maintain semaphores for PCIe links,
and block PCIe communication of lower-priority jobs when higher-
priority jobs use the PCIe links. CTs access the semaphores via
inter-process shared memory. If a job is rescheduled (e.g., using
new resources) or finishes, Crux treats this as a new status and
reassigns paths and priorities to the remaining jobs. Considering
that the duration of a DLT job can range from hours to months,
the overhead of profiling and re-scheduling communication, which
takes less than one minute for each job’s arrival or completion, is
considered negligible.

6 EVALUATION

In this section, we show that:
• In a 96-GPU testbed, Crux improves GPU utilization by up to
14.8%, and reduces up to 33% job completion time (JCT) for GPU-
intensive jobs.
• In the 2,000-GPU production trace-based simulation, Crux im-

proves GPU utilization by 4% to 23% compared with state-of-the-
arts under various network architectures.
• As a communication scheduler, Crux is compatible with state-
of-the-art job schedulers, and further improves GPU utilization
and DLT performance by 11% to 23%.

…

…

…

8 Aggr Switches

6 ToR Switches

2×100Gbps

12 Hosts

8×100Gbps

GPU

CPU

NIC

GPU GPU

NIC

GPU GPU

NIC

GPU GPU

NIC

GPU

CPU

PCIe 4.0 x16

100Gbps

A100

Inter-host
Topology

Intra-host
Topology

Figure 18: The testbed is composed of 12 hosts, each with

8 Nvidia A100 GPUs and 4×200Gbps RDMA NIC. Hosts are

connected through a two-layer Clos network. Besides PCIe

links, GPUs in the same hosts are also connected via NVLinks

that are not drawn for brevity.

2 3 4
n*BERT-8GPU + GPT-32GPU

0.4

0.7

1.0

G
PU

 U
til

 (×
10

0%
)

w/o Crux Crux Ideal

(a) Overall average GPU Utilization

�
 �
������������������
����

�

�

�
��
�
���
�
�

�
�
���� �
�

����
���

����

!	���� " �� "

BERT

GPT

BERT

GPT

BERT

GPT

(b) Per-job end-to-end performance

Figure 19: Contention on network paths between a GPT

model and multiple BERT models.

Idealw/o Crux Crux
2*ResNet-8GPU+2*BERT-16GPU

+GPT-48GPU

0.0

0.5

1.0

G
PU

 U
til

 (×
10

0%
)

w/o Crux Crux Ideal

(a) Overall average GPU Utilization

ResNet BERT GPT
2*ResNet-8GPU+2*BERT-16GPU

+GPT-48GPU

0

1

2

N
or

m
. J

C
T

+2%
-15% -18%

w/o Crux Crux

(b) Per-job end-to-end performance

Figure 20: Contention on network paths among a GPTmodel,

two BERT models, and two ResNet models.

6.1 Experiment Setup

Real-world testbed. In our testbed shown in Figure 18, each host
(with eight GPUs) is connected to one ToR switch via four links,
with every two GPUs connected to one switch via a shared link
(e.g., GPU 0&1 connects to switch 1 via link 1, GPU 2&3 connects to
switch 2 via link 2). If GPUs of different hosts need to communicate,
as they may not be connected to the same ToR switch, they would
require communication through aggregation switches.
Simulated GPU cluster. We implemented a simulator for GPU
cluster networks to simulate the computation and communication
processes of multiple jobs. For computation simulation of a DLT job,
we directly obtain the per-iteration computation time of by running
models on actual GPUs. For communication simulation, we use the
alpha-beta model [34]. This model considers the transmission delay
over a link to include both the physical link delay and the delay
associated with the data size and bandwidth. The simulator assumes
8 priority levels are available.

Using our simulator, we conduct a large-scale simulation based
on the production trace collected from 2,000+ GPUs for two weeks
(described in §2.2), and apply two network topologies: (1) Double-
sided topology, consisting of 6 ToR switches, 12 aggregation switches,
and 32 core switches. Each host is connected to two ToR switches

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

n=1 n=2 n=3
n*ResNet-4GPU + BERT-16GPU

0.4

0.7

1.0

G
PU

 U
til

 (×
10

0%
)

w/o Crux Crux Ideal

(a) Overall average GPU Utilization

n=1 n=2 n=3
n*ResNet-4GPU + BERT-16GPU

0

1

2

N
or

m
. J

C
T

+2%
-15%

+2%
-19%

+3%

-33%

w/o Crux Crux

(b) Per-job end-to-end performance

Figure 21: Contention on PCIe between a BERT model and

multiple ResNet models.

n=8 n=16 n=24
ResNet-8GPU + BERT-nGPU

0.4

0.7

1.0

G
PU

 U
til

 (×
10

0%
)

w/o Crux Crux Ideal

(a) Overall average GPU Utilization

n=8 n=16 n=24
ResNet-8GPU + BERT-nGPU

0

1

2

N
or

m
. J

C
T

+1% -7% +1%
-14%

+2%
-28%

w/o Crux Crux

(b) Per-job end-to-end performance

Figure 22: Contention on PCIe between a ResNet model and

a BERT model with varying number of GPUs.

Sincro
nia

TACCL*

CASSINI

Crux-PA

Crux-PS-PA

Crux-fu
ll

0.0

0.5

1.0

G
PU

 U
til

 (×
10

0%
)

0.39 0.49 0.48 0.51
0.62 0.62

(a) Clos topology

Sincro
nia

TACCL*

CASSINI

Crux-PA

Crux-PS-PA

Crux-fu
ll

0.0

0.5

1.0

G
PU

 U
til

 (×
10

0%
)

0.43 0.46 0.45 0.48 0.51 0.50

(b) Double-sided topology

Figure 23: Comparison of average GPU utilization across

different communication schedulers.

via eight links. It is exactly the actual topology used in the trace.
(2) Two-layer Clos topology, consisting of 173 ToR switches and 16
aggregation switches. Each host is connected to one ToR.
Performance metrics. As the optimization goal of this paper, we
evaluate the overall GPU utilization as the performance metric of
the GPU cluster. To show how each individual job performs, we
also evaluate the end-to-end training performance, i.e., the job com-
pletion time (JCT, which is inversely proportional to throughput).

6.2 Real-World Evaluation

In the real-world testbed, we co-locate multiple DLT jobs with and
without Crux. Each job runs a ResNet, BERT, or GPT model, which
represents small, medium, and large DLT jobs, respectively. To
better visualize Crux’s improvement, we also evaluate the training
performance of each DLT job when running alone, regarded as
ideal training performance.
Contention on network paths.We co-locate a 32GPU GPT job
with multiple 8GPU BERT jobs, producing communication con-
tention on network paths. Figure 19(a) indicates that as communi-
cation contention increases, GPU utilization decreases. However,
with Crux, overall GPU utilization is improved by 8.3% to 12.9%,
and is close to the ideal case. Figure 19(b) analyzes this performance
gain by showing the job completion time (JCT) of each job. Based
on Crux’s key idea, GPT has higher GPU intensity than BERT, and
should be prioritized in communication scheduling. With Crux
scheduling, GPT gets much shorter JCT (-11% to -25%) at the ex-
pense of a small increase in BERT’s JCT (+0% to +3%). The increase
in BERT’s JCT is not significant. This is because Crux can mitigate

some contention through effective path selection. Since GPT is
more important than BERT, this reasonable trade-off significantly
improves the overall GPU utilization.

We also co-locate a 48GPU GPT job with two 8GPU ResNet
jobs and two 16GPU BERT jobs. In this case, GPT has the highest
GPU intensity and ResNet has the lowest. Figure 20(b) shows that
with Crux scheduling, GPT’s JCT decreases by 18%, BERT’s JCT
decreases by 15%, and ResNet’s JCT increases by 2% to reserve
network bandwidth for other two models. As a whole, with Crux,
the GPU utilization increases by 13.9% (Figure 20(a)).
Contention on PCIe. We produce two PCIe contention cases
in Figure 3(b). The first case co-locates a 16GPU BERT job with
multiple 4GPU ResNet jobs, shown in Figure 19. The second case co-
locates the 8GPU ResNet with a BERT in varying GPU numbers (8,
16, and 24), shown in Figure 20. Figures 19(a) and 20(a) show that in
both cases Crux gets higher GPU utilization (+9.5% to +14.8%), and
is close to the ideal results. Figures 19(b) and 20(b) show that with
Crux scheduling, BERT’s job completion time (JCT) is significantly
decreased (-7% to -33%) due to its high GPU intensity, and ResNet’s
JCT is slightly increased (+1% to +3%).

6.3 Trace-based Simulation

We compare Crux with different communication schedulers, in-
cluding a general co-flow scheduler (Sincronia [16]), an intra-job
communication scheduler (TACCL* [53] described in §4.4), and
an inter-job communication scheduler (CASSINI [51]). For Crux,
we also separately evaluate the performance under three combina-
tions: using only priority assignment (Crux-PA), combining path
selection with priority assignment (Crux-PS-PA), and integrating
priority assignment and compression and path selection (Crux-
full).

In the simulation, 11 different models are evaluated, including
five open-source models (BERT, GPT [13], ResNet, NMT [54], and
Multi-Interests [40]) and their five variants, alongwith two in-house
models for Click-Through-Rate and transformer-based NLP.
Performance under different GPU clusters. Figure 23 shows
the performance comparison in a two-layer Clos network and a
three-layer double-sided network. Compared with baselines, Crux
improves GPU utilization by 13% to 23% and 4% to 7%, respectively.
GPU intensity in the network vs. GPU utilization. To prove
that Crux’s performance gain comes from the better scheduling
for GPU-intensive jobs (§4), we zoom in the detail of the simulation
in Clos topology (Figure 23(a)). Figure 24 presents the real-time
distribution of jobs’ GPU intensity whose data flow is transmitted
in the network. Dark color represents the data flow of jobs with
higher GPU intensity and light color represents data flow of jobs
with low GPU intensity. The white color indicates that a part of
network links are idle. The GPU intensity distribution in intra-host
PCIe-NIC links, NIC-ToR switch links, and ToR-Aggregation switch
links is presented separately. We show the real-time GPU utilization
of the whole cluster with the same timeline.

First, we compare Sincronia (Figure 24(a)), TACCL* (Figure 24(b)),
CASSINI (Figure 24(c)), and Crux-PA (Figure 24(d)). We find that
the GPU intensity distribution of Crux-PA has more dark colors,
since Crux’s priority assignment (§4.2) tries to prioritize GPU-
intensive jobs during communication contention. Focusing on the
solid rounded rectangles in Figure 24(a),24(b), 24(c) and 24(d), on the

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

���

���

	��

�
��

��
' !

� �
 � 	

� "�����)�

�
$%

"
���

%�
��

��
�

 &
'%

�(
' $

#

��������

�����$�

�$�����%

(a) Sincronia

���

���

	��

�
��

��
' !

� �
 � 	

� "�����)�

�
$%

"
���

%�
��

��
�

 &
'%

�(
' $

#

��������

�����$�

�$�����%

(b) TACCL*

���

���

	��

�
��

��
' !

� �
 � 	

� "�����)�

�
$%

"
���

%�
��

��
�

 &
'%

�(
' $

#

��������

�����$�

�$�����%

(c) CASSINI

���

���

	��

�
��

��
' !

� �
 � 	

� "�����)�

�
$%

"
���

%�
��

��
�

 &
'%

�(
' $

#

��������

�����$�

�$�����%

(d) Crux-PA

���

���

	��

�
��

��
' !

� �
 � 	

� "�����)�

�
$%

"
���

%�
��

��
�

 &
'%

�(
' $

#

��������

�����$�

�$�����%

(e) Crux-PS-PA

���

���

	��

�
��

��
' !

� �
 � 	

� "�����)�

�
$%

"
���

%�
��

��
�

 &
'%

�(
' $

#

��������

�����$�

�$�����%

(f) Crux-full
Figure 24: The real-time distribution of jobs’ GPU intensity whose data flow is being transmitted in the network. A darker

color represents higher GPU intensity.

None+Crux Muri+Crux HiveD+Crux
0.00

0.25

0.50

0.75

1.00

G
PU

 U
til

 (×
10

0%
)

0.39

0.62 0.59
0.73

0.64
0.75

Figure 25: GPU utilization comparison between using job

schedulers alone and combining them with Crux.

first day of the trace, the baselines’ data flow distribution is gener-
ally in light color, and Crux’s color is much darker, corresponding
to 26%, 14%, and 5% average GPU utilization improvement.

Second, we compare Crux-PA (Figure 24(d)) and Crux-PS-PA
(Figure 24(e)). We find that Crux-PS-PA has a much larger area
with a non-white color, indicating that network paths are better
utilized with path selection (§4.1). Focusing on the dashed rounded
rectangles in Figures 24(d) and 24(e), the increase in the non-white
area brings a 97% increase in network utilization.

Third, we compare Crux-PS-PA (Figure 24(e)) and Crux-full
(Figure 24(f)). Their GPU intensity distribution is highly consistent.
This indicates that although the priorities of 5,000 jobs are com-
pressed to only eight levels, Crux’s compression algorithm (§4.3)
significantly reduces the performance loss, introducing nearly no
side-effect on overall GPU utilization.

Putting the above observations together, we prove that Crux
avoids potential communication contention by path selection, and
prioritizes GPU-intensive jobs, achieving higher GPU utilization.

6.4 Working Together with Job Schedulers

As explained in §1, Crux is orthogonal to job schedulers, and can
work together with them. Figure 25 shows how Crux performs

with and without job scheduling. We evaluate two job schedulers,
HiveD [61] and Muri [63]. HiveD allocates GPUs based on physical
affinity to minimize communication overhead, while Muri sched-
ules jobs by reducing idle links. Compared to not performing job
scheduling (“None” in Figure 25), Muri and HiveD improve GPU
utilization by 20% and 25%, respectively. Together with Crux, GPU
utilization can be further improved by 14% and 11%.

The result shows that, with state-of-the-art job schedulers, there
still exists communication contention between DLT jobs which
degrades GPU utilization, so there is still sufficient room for Crux
to produce performance gain.

7 DISCUSSIONS

7.1 Limitations in Crux Algorithm

Although the definition of GPU intensity helps us greatly improve
the communication scheduling decisions, there is still a gap between
our algorithm (§4) to the optimal. The gap mainly comes from the
complex communication pattern of DLT jobs, and Crux makes
several simplifications in §4.2.

First, §4.2 assumes the communication and computation are both
continuous in one iteration of DLT job, and their overlap is of a
simple pattern, like Figure 12. In actual DLT jobs, computation and
communication may occur alternately many times, some commu-
nication kernels can be partially overlapped by computation and
some are not, generating complex overlap patterns. Fortunately, we
find that the most important factor affecting communication sched-
uling is the overlap ratio, i.e., the proportion of overlap between
computation and communication. Jobs with less overlap between
computation and communication are usually much more sensitive
to communication latency. So we believe that our assumption is
sufficient to reflect the overlap ratio.

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

Second, to compute the correction factor for each DLT job, Crux
only chooses the job with the most network traffic as the reference
job. Mathematically, the reference job should be all possible com-
binations of jobs which have communication contention with the
given job, rather than one job. Thus, a better solution should be enu-
merating all other job combinations as reference jobs, computing a
correction factor based on each of them, and making a weighted
average based on the frequency of communication contention be-
tween them. This requires exponential computational complexity
and fine-grained network monitoring, which is not practical in
real-world cluster networks. Instead, we simplify the computation
of correction factor for easy-deployment.

Third, the communication performance of DLT jobs is also re-
lated to some other factors, such as storage traffic, the timing of
each job’s communication, and specific collective communication
algorithms. For example, regular communication traffic may be
mixed with storage-related traffic, such as checkpointing or dataset
loading. Storage traffic may vary across different iterations, and the
actual measurement of 𝑡 𝑗 (Equation 2) may be affected by storage
traffic. Fortunately, modern GPU clusters typically adopt a com-
pute/storage separation architecture, and the impact of storage traf-
fic on performance tends to be limited. Our evaluation also proves
that Crux can make scheduling decisions close to the optimal.

7.2 Job Fairness in Scheduling

The goal of Crux is to optimize GPU utilization for a cluster, which
means that some jobs have to sacrifice their performance for more
GPU-intensive jobs (usually involving more GPUs). For a GPU clus-
ter provider, GPU-intensive jobs should be treated more carefully
(which is what we have been doing all along) because the customer
pays significantly more money to rent GPUs for them. We acknowl-
edge that this could be detrimental to fairness, but for a GPU cluster
provider, this weakness is far outweighed by the benefits brought
about by optimizing GPU utilization.

Based on our evaluation, although the performance of some jobs
is reduced due to Crux’s scheduling, no job is starved. For example,
jobs with the lowest priority experience a 55.5% decrease in training
throughput in §6.3, instead of a complete halt in training. This is
because the traffic patterns of DLT jobs are periodic and bursty,
which means that the network links are idle for a significant portion
of the time. As a result, it is impossible for any jobs to be completely
starved of resources and unable to communicate. Instead, they just
experience delayed communication during contention.

Crux can be easily extended to also consider fairness if one
really wants to make a trade-off. For example, we can calculate
a weighted average of GPU intensity and the recent decrease in
throughput for each job due to communication contention as the
final priority assignment, or compute a Pareto-optimal frontier.

7.3 Adaptability to Other Topologies

In addition to the two topologies evaluated in §6, Crux has the
potential to be adapted to other topologies. First, Crux schedules
communication based on GPU intensity, an inherent characteristic
of DLT jobs, which is independent of network topologies. Compared
with joint optimization that considers more factors like network
topology, although our topology-independent design may sacrifice
some potential gains, it provides significant simplicity for real-
world deployment. Thus, Crux can be applied to any topology.

Second, the Clos and double-sided topologies evaluated in this paper
are representative of multi-layered cluster architecture. Although
there are other less commonly deployed topologies, such as Torus,
they also face the communication contention problem in multi-
tenant scenarios. Therefore, Crux has the potential to improve
GPU utilization across various topologies.

8 RELATEDWORK

Job scheduler. A series of work [20, 21, 30, 31, 33, 46, 57, 58, 63, 64]
focus on optimizing the overall training performance by scheduling
GPU for different DLT jobs. Crux is orthogonal to these methods,
which targets a similar object but does not touch the high-level
arrangements of jobs. Crux can also work together with them.
Communication scheduler. Communication schedulers can be
divided into three categories. First, general co-flow schedulers
solve the mathematical problem of multi-flow scheduling, includ-
ing path selection and priority assignment. Coflow [22], Orches-
tra [24],Varys [25], Weaver [35], PIAS [17], Amoeba [60], Sincro-
nia [16], Aalo [23], Karuna [19], and Baraat [26] propose solutions
for optimizing the average completion time or minimizing job tardi-
ness (i.e., enable more jobs to meet their deadlines). Since they focus
on general data flow, they are unaware of how different co-flows
affect the end-to-end DLT performance or the GPU utilization.

Second, intra-job communication schedulers target optimizing
multiple flows in one DLT job. BytePS [37], ATP [41], ByteSched-
uler [50], EchelonFlow [48], Lina [42], CadentFlow [38], SYNDI-
CATE [47], MXDAG [55], BGL [45], Janus [29], ACCL [28], and
TACCL [53] allocate different priorities or different paths to flows
in a single DLT job. These methods utilize the job’s flow pattern
to optimize scheduling decisions, and are unaware of communica-
tion contention among multiple jobs. Crux is orthogonal to these
methods, as Crux focuses on the inter-job contention problem.

Third, CASSINI [51] is an inter-job communication scheduler
that aims to reuse different network links over time by assigning a
time-dimension offset to each job. However, dynamic networks and
jobs can affect the actual traffic pattern of each job. Thus, merely
setting a time offset for each job cannot eliminate communication
contention among jobs.

9 CONCLUSION

This paper presents Crux, a communication scheduler that tackles
inter-job communication contention and optimizes cluster GPU uti-
lization. Crux proposes the concept of GPU intensity, and reduces
the GPU utilization problem to a flow optimization problem. To
approximate the optimal flow scheduling in real-world multi-tenant
GPU clusters, Crux proposes GPU intensity-based path selection,
priority assignment, and priority compression for DLT jobs. Our
evaluation demonstrates that compared with state-of-the-art, Crux
improves the cluster GPU utilization by up to 23%.
Ethics. This work does not raise any ethical issues.

Acknowledgements

We thank our shepherd Sujata Banerjee, and the SIGCOMM review-
ers for their insightful comments. We thank Yu Zhou for imple-
menting the earliest version of Crux. We also thank Xin Jin and
Minlan Yu for their valuable feedback on earlier drafts of this paper.
Ennan Zhai is the corresponding author.

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

References

[1] 2022. AMD uProf. https://www.amd.com/en/developer/uprof.html.
[2] 2022. Equal-cost multi-path routing (ECMP). https://en.wikipedia.org/wiki/

Equal-cost_multi-path_routing.
[3] 2022. Intel Performance Counter Monitor. https://github.com/intel/pcm.
[4] 2022. NVIDIA Collective Communications Library (NCCL). https://developer.

nvidia.com/nccl.
[5] 2022. PyTorch. https://pytorch.org/.
[6] 2022. RDMA over Converged Ethernet. https://en.wikipedia.org/wiki/RDMA_

over_Converged_Ethernet.
[7] 2022. X-DeepLearning. https://github.com/alibaba/x-deeplearning.
[8] 2023. Adobe Firefly. https://www.adobe.com/sensei/generative-ai/firefly.html.
[9] 2023. Alibaba GPU Cluster Trace 2023. https://github.com/alibaba/alibaba-

lingjun-dataset-2023.
[10] 2023. Breadth-first search. https://en.wikipedia.org/wiki/Breadth-first_search.
[11] 2023. Github Copilot. https://github.com/features/copilot.
[12] 2023. Microsoft365. https://www.microsoft.com/en-us/microsoft-365.
[13] 2024. Megatron GPT3 MODEL. https://github.com/NVIDIA/Megatron-LM/tree/

main/examples/gpt3.
[14] 2024. Multi-commodity flow problem. https://en.wikipedia.org/wiki/Multi-

commodity_flow_problem.
[15] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,
Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A system for large-scale machine
learning. In OSDI.

[16] Saksham Agarwal, Shijin Rajakrishnan, Akshay Narayan, Rachit Agarwal,
David B. Shmoys, and Amin Vahdat. 2018. Sincronia: near-optimal network
design for coflows. In Proceedings of the 2018 Conference of the ACM Special Inter-
est Group on Data Communication, SIGCOMM 2018, Budapest, Hungary, August
20-25, 2018. ACM, 16–29. https://doi.org/10.1145/3230543.3230569

[17] Wei Bai, Kai Chen, Hao Wang, Li Chen, Dongsu Han, and Chen Tian. 2015.
Information-Agnostic Flow Scheduling for Commodity Data Centers. In 12th
USENIX Symposium on Networked Systems Design and Implementation, NSDI
15, Oakland, CA, USA, May 4-6, 2015. USENIX Association, 455–468. https:
//www.usenix.org/conference/nsdi15/technical-sessions/presentation/bai

[18] Ran Ben Basat, Sivaramakrishnan Ramanathan, Yuliang Li, Gianni Antichi, Min-
lan Yu, and Michael Mitzenmacher. 2020. PINT: Probabilistic In-band Network
Telemetry. In SIGCOMM ’20: Proceedings of the 2020 Annual conference of the
ACM Special Interest Group on Data Communication on the applications, technolo-
gies, architectures, and protocols for computer communication, Virtual Event, USA,
August 10-14, 2020. ACM, 662–680. https://doi.org/10.1145/3387514.3405894

[19] Li Chen, Kai Chen,Wei Bai, andMohammadAlizadeh. 2016. SchedulingMix-flows
in Commodity Datacenters with Karuna. In Proceedings of the ACM SIGCOMM
2016 Conference, Florianopolis, Brazil, August 22-26, 2016. ACM, 174–187. https:
//doi.org/10.1145/2934872.2934888

[20] Quan Chen, Hailong Yang, Jason Mars, and Lingjia Tang. 2016. Baymax: QoS
Awareness and Increased Utilization for Non-Preemptive Accelerators in Ware-
house Scale Computers. (2016), 681–696. https://doi.org/10.1145/2872362.2872368

[21] Yangrui Chen, Yanghua Peng, Yixin Bao, Chuan Wu, Yibo Zhu, and Chuanxiong
Guo. 2020. Elastic parameter server load distribution in deep learning clusters.
In SoCC ’20: ACM Symposium on Cloud Computing, Virtual Event, USA, October
19-21, 2020. ACM, 507–521. https://doi.org/10.1145/3419111.3421307

[22] Mosharaf Chowdhury and Ion Stoica. 2012. Coflow: a networking abstraction for
cluster applications. In 11th ACMWorkshop on Hot Topics in Networks, HotNets-XI,
Redmond, WA, USA - October 29 - 30, 2012. ACM, 31–36. https://doi.org/10.1145/
2390231.2390237

[23] Mosharaf Chowdhury and Ion Stoica. 2015. Efficient Coflow Scheduling Without
Prior Knowledge. In Proceedings of the 2015 ACM Conference on Special Interest
Group on Data Communication, SIGCOMM 2015, London, United Kingdom, August
17-21, 2015. ACM, 393–406. https://doi.org/10.1145/2785956.2787480

[24] Mosharaf Chowdhury, Matei Zaharia, Justin Ma, Michael I. Jordan, and Ion Stoica.
2011. Managing data transfers in computer clusters with orchestra. In Proceedings
of the ACM SIGCOMM 2011 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications, Toronto, ON, Canada, August 15-19,
2011. ACM, 98–109. https://doi.org/10.1145/2018436.2018448

[25] Mosharaf Chowdhury, Yuan Zhong, and Ion Stoica. 2014. Efficient coflow sched-
uling with Varys. In ACM SIGCOMM 2014 Conference, SIGCOMM’14, Chicago, IL,
USA, August 17-22, 2014. ACM, 443–454. https://doi.org/10.1145/2619239.2626315

[26] Fahad R. Dogar, Thomas Karagiannis, Hitesh Ballani, and Antony I. T. Rowstron.
2014. Decentralized task-aware scheduling for data center networks. In ACM
SIGCOMM 2014 Conference, SIGCOMM’14, Chicago, IL, USA, August 17-22, 2014.
ACM, 431–442. https://doi.org/10.1145/2619239.2626322

[27] Jianbo Dong, Zheng Cao, Tao Zhang, Jianxi Ye, Shaochuang Wang, Fei Feng,
Li Zhao, Xiaoyong Liu, Liuyihan Song, Liwei Peng, Yiqun Guo, Xiaowei Jiang,
Lingbo Tang, Yin Du, Yingya Zhang, Pan Pan, and Yuan Xie. 2020. EFLOPS:

Algorithm and System Co-Design for a High Performance Distributed Training
Platform. In IEEE International Symposium on High Performance Computer Ar-
chitecture, HPCA 2020, San Diego, CA, USA, February 22-26, 2020. IEEE, 610–622.
https://doi.org/10.1109/HPCA47549.2020.00056

[28] Jianbo Dong, Shaochuang Wang, Fei Feng, Zheng Cao, Heng Pan, Lingbo Tang,
Pengcheng Li, Hao Li, Qianyuan Ran, Yiqun Guo, Shanyuan Gao, Xin Long, Jie
Zhang, Yong Li, Zhisheng Xia, Liuyihan Song, Yingya Zhang, Pan Pan, Guohui
Wang, and Xiaowei Jiang. 2021. ACCL: Architecting Highly Scalable Distributed
Training Systems With Highly Efficient Collective Communication Library. IEEE
Micro 41, 5 (2021), 85–92. https://doi.org/10.1109/MM.2021.3091475

[29] Adam Dunkels, Richard Gold, Sergio Angel Marti, Arnold Pears, and Mats Ud-
denfeldt. 2005. Janus: An Architecture for Flexible Access to Sensor Networks.
In Proceedings of the 1st ACM Workshop on Dynamic Interconnection of Networks
(Cologne, Germany) (DIN ’05). Association for Computing Machinery, New York,
NY, USA, 48–52. https://doi.org/10.1145/1080776.1080792

[30] Robert Grandl, Ganesh Ananthanarayanan, Srikanth Kandula, Sriram Rao, and
Aditya Akella. 2014. Multi-resource packing for cluster schedulers. (2014),
455–466. https://doi.org/10.1145/2619239.2626334

[31] Robert Grandl, Srikanth Kandula, Sriram Rao, Aditya Akella, and Janardhan
Kulkarni. 2016. GRAPHENE: Packing and Dependency-Aware Scheduling
for Data-Parallel Clusters. In 12th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2016, Savannah, GA, USA, November 2-4,
2016. USENIX Association, 81–97. https://www.usenix.org/conference/osdi16/
technical-sessions/presentation/grandl_graphene

[32] Albert G. Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula,
Changhoon Kim, Parantap Lahiri, David A. Maltz, Parveen Patel, and Sudipta
Sengupta. 2009. VL2: a scalable and flexible data center network. In Proceedings of
the ACM SIGCOMM 2009 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications, Barcelona, Spain, August 16-21, 2009.
ACM, 51–62. https://doi.org/10.1145/1592568.1592576

[33] Juncheng Gu, Mosharaf Chowdhury, Kang G. Shin, Yibo Zhu, Myeongjae Jeon,
Junjie Qian, Hongqiang Harry Liu, and Chuanxiong Guo. 2019. Tiresias: A GPU
Cluster Manager for Distributed Deep Learning. In 16th USENIX Symposium on
Networked Systems Design and Implementation, NSDI 2019, Boston, MA, February
26-28, 2019. USENIX Association, 485–500. https://www.usenix.org/conference/
nsdi19/presentation/gu

[34] Roger W. Hockney. 1994. The Communication Challenge for MPP: Intel Paragon
and Meiko CS-2. Parallel Comput. 20, 3 (1994), 389–398. https://doi.org/10.1016/
S0167-8191(06)80021-9

[35] Xin Sunny Huang, Yiting Xia, and T. S. Eugene Ng. 2020. Weaver: Efficient
Coflow Scheduling inHeterogeneous Parallel Networks. In 2020 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), NewOrleans, LA, USA, May
18-22, 2020. IEEE, 1071–1081. https://doi.org/10.1109/IPDPS47924.2020.00113

[36] Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee, Junjie Qian, Wen-
cong Xiao, and Fan Yang. 2019. Analysis of Large-Scale Multi-Tenant GPU
Clusters for DNN Training Workloads. In 2019 USENIX Annual Technical Confer-
ence, USENIX ATC 2019, Renton, WA, USA, July 10-12, 2019. USENIX Association,
947–960. https://www.usenix.org/conference/atc19/presentation/jeon

[37] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui, and Chuanxiong Guo.
2020. A Unified Architecture for Accelerating Distributed DNN Training in
Heterogeneous GPU/CPU Clusters. In 14th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2020, Virtual Event, November 4-6,
2020. USENIX Association, 463–479. https://www.usenix.org/conference/osdi20/
presentation/jiang

[38] Sangeetha Abdu Jyothi, Sayed Hadi Hashemi, Roy H. Campbell, and Brighten
Godfrey. 2020. Towards An Application Objective-Aware Network Interface. In
12th USENIX Workshop on Hot Topics in Cloud Computing, HotCloud 2020, July 13-
14, 2020. USENIX Association. https://www.usenix.org/conference/hotcloud20/
presentation/jyothi

[39] Changhoon Kim, Anirudh Sivaraman, Naga Katta, Antonin Bas, Advait Dixit,
and Lawrence J Wobker. 2015. In-band network telemetry via programmable
dataplanes. In SIGCOMM.

[40] Taesup Kim, Inchul Song, and Yoshua Bengio. 2017. Dynamic Layer Normalization
for Adaptive Neural Acoustic Modeling in Speech Recognition. In Interspeech 2017,
18th Annual Conference of the International Speech Communication Association,
Stockholm, Sweden, August 20-24, 2017. ISCA, 2411–2415. https://doi.org/10.
21437/INTERSPEECH.2017-556

[41] ChonLam Lao, Yanfang Le, Kshiteej Mahajan, Yixi Chen, Wenfei Wu, Aditya
Akella, and Michael M. Swift. 2021. ATP: In-network Aggregation for Multi-
tenant Learning. In 18th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2021, April 12-14, 2021. USENIX Association, 741–761. https:
//www.usenix.org/conference/nsdi21/presentation/lao

[42] Jiamin Li, Yimin Jiang, Yibo Zhu, Cong Wang, and Hong Xu. 2023. Accelerating
Distributed MoE Training and Inference with Lina. In 2023 USENIX Annual Tech-
nical Conference, USENIX ATC 2023, Boston, MA, USA, July 10-12, 2023. USENIX
Association, 945–959. https://www.usenix.org/conference/atc23/presentation/li-
jiamin

https://www.amd.com/en/developer/uprof.html
https://en.wikipedia.org/wiki/Equal-cost_multi-path_routing
https://en.wikipedia.org/wiki/Equal-cost_multi-path_routing
https://github.com/intel/pcm
https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl
https://pytorch.org/
https://en.wikipedia.org/wiki/RDMA_over_Converged_Ethernet
https://en.wikipedia.org/wiki/RDMA_over_Converged_Ethernet
https://github.com/alibaba/x-deeplearning
https://www.adobe.com/sensei/generative-ai/firefly.html
https://github.com/alibaba/alibaba-lingjun-dataset-2023
https://github.com/alibaba/alibaba-lingjun-dataset-2023
https://en.wikipedia.org/wiki/Breadth-first_search
https://github.com/features/copilot
https://www.microsoft.com/en-us/microsoft-365
https://github.com/NVIDIA/Megatron-LM/tree/main/examples/gpt3
https://github.com/NVIDIA/Megatron-LM/tree/main/examples/gpt3
https://en.wikipedia.org/wiki/Multi-commodity_flow_problem
https://en.wikipedia.org/wiki/Multi-commodity_flow_problem
https://doi.org/10.1145/3230543.3230569
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/bai
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/bai
https://doi.org/10.1145/3387514.3405894
https://doi.org/10.1145/2934872.2934888
https://doi.org/10.1145/2934872.2934888
https://doi.org/10.1145/2872362.2872368
https://doi.org/10.1145/3419111.3421307
https://doi.org/10.1145/2390231.2390237
https://doi.org/10.1145/2390231.2390237
https://doi.org/10.1145/2785956.2787480
https://doi.org/10.1145/2018436.2018448
https://doi.org/10.1145/2619239.2626315
https://doi.org/10.1145/2619239.2626322
https://doi.org/10.1109/HPCA47549.2020.00056
https://doi.org/10.1109/MM.2021.3091475
https://doi.org/10.1145/1080776.1080792
https://doi.org/10.1145/2619239.2626334
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/grandl_graphene
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/grandl_graphene
https://doi.org/10.1145/1592568.1592576
https://www.usenix.org/conference/nsdi19/presentation/gu
https://www.usenix.org/conference/nsdi19/presentation/gu
https://doi.org/10.1016/S0167-8191(06)80021-9
https://doi.org/10.1016/S0167-8191(06)80021-9
https://doi.org/10.1109/IPDPS47924.2020.00113
https://www.usenix.org/conference/atc19/presentation/jeon
https://www.usenix.org/conference/osdi20/presentation/jiang
https://www.usenix.org/conference/osdi20/presentation/jiang
https://www.usenix.org/conference/hotcloud20/presentation/jyothi
https://www.usenix.org/conference/hotcloud20/presentation/jyothi
https://doi.org/10.21437/INTERSPEECH.2017-556
https://doi.org/10.21437/INTERSPEECH.2017-556
https://www.usenix.org/conference/nsdi21/presentation/lao
https://www.usenix.org/conference/nsdi21/presentation/lao
https://www.usenix.org/conference/atc23/presentation/li-jiamin
https://www.usenix.org/conference/atc23/presentation/li-jiamin

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

[43] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng, Lingbo Tang,
Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Alizadeh, and Minlan Yu.
2019. HPCC: high precision congestion control. In Proceedings of the ACM Special
Interest Group on Data Communication, SIGCOMM 2019, Beijing, China, August
19-23, 2019. ACM, 44–58. https://doi.org/10.1145/3341302.3342085

[44] Kefei Liu, Zhuo Jiang, Jiao Zhang, Haoran Wei, Xiaolong Zhong, Lizhuang Tan,
Tian Pan, and Tao Huang. 2023. Hostping: Diagnosing Intra-host Network
Bottlenecks in RDMA Servers. In 20th USENIX Symposium on Networked Systems
Design and Implementation, NSDI 2023, Boston, MA, April 17-19, 2023. USENIX
Association, 15–29. https://www.usenix.org/conference/nsdi23/presentation/liu-
kefei

[45] Tianfeng Liu, Yangrui Chen, Dan Li, Chuan Wu, Yibo Zhu, Jun He, Yanghua
Peng, Hongzheng Chen, Hongzhi Chen, and Chuanxiong Guo. 2023. BGL: GPU-
Efficient GNN Training by Optimizing Graph Data I/O and Preprocessing. In
20th USENIX Symposium on Networked Systems Design and Implementation, NSDI
2023, Boston, MA, April 17-19, 2023. USENIX Association, 103–118. https://www.
usenix.org/conference/nsdi23/presentation/liu-tianfeng

[46] Kshiteej Mahajan, Arjun Balasubramanian, Arjun Singhvi, Shivaram Venkatara-
man, Aditya Akella, Amar Phanishayee, and Shuchi Chawla. 2020. Themis: Fair
and Efficient GPU Cluster Scheduling. In 17th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2020, Santa Clara, CA, USA, February
25-27, 2020. USENIX Association, 289–304. https://www.usenix.org/conference/
nsdi20/presentation/mahajan

[47] Kshiteej Mahajan, Ching-Hsiang Chu, Srinivas Sridharan, and Aditya Akella. 2023.
Better Together: Jointly Optimizing ML Collective Scheduling and Execution
Planning using SYNDICATE. In 20th USENIX Symposium on Networked Systems
Design and Implementation, NSDI 2023, Boston, MA, April 17-19, 2023. USENIX
Association, 809–824. https://www.usenix.org/conference/nsdi23/presentation/
mahajan

[48] Rui Pan, Yiming Lei, Jialong Li, Zhiqiang Xie, Binhang Yuan, and Yiting Xia.
2022. Efficient flow scheduling in distributed deep learning training with echelon
formation. In Proceedings of the 21st ACM Workshop on Hot Topics in Networks,
HotNets 2022, Austin, Texas, November 14-15, 2022. ACM, 93–100. https://doi.org/
10.1145/3563766.3564096

[49] Pitch Patarasuk and Xin Yuan. 2009. Bandwidth optimal all-reduce algorithms
for clusters of workstations. J. Parallel Distributed Comput. 69, 2 (2009), 117–124.
https://doi.org/10.1016/J.JPDC.2008.09.002

[50] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao, Bairen Yi, Chang Lan, Chuan
Wu, and Chuanxiong Guo. 2019. A generic communication scheduler for dis-
tributed DNN training acceleration. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles, SOSP 2019, Huntsville, ON, Canada, October 27-30,
2019. ACM, 16–29. https://doi.org/10.1145/3341301.3359642

[51] Sudarsanan Rajasekaran, Manya Ghobadi, and Aditya Akella. 2024. CASSINI:
Network-Aware Job Scheduling in Machine Learning Clusters. (2024). https:
//www.usenix.org/conference/nsdi24/presentation/rajasekaran

[52] Sudarsanan Rajasekaran, Manya Ghobadi, Gautam Kumar, and Aditya Akella.
2022. Congestion control in machine learning clusters. In Proceedings of the 21st
ACM Workshop on Hot Topics in Networks, HotNets 2022, Austin, Texas, November
14-15, 2022. ACM, 235–242. https://doi.org/10.1145/3563766.3564115

[53] Aashaka Shah, Vijay Chidambaram, Meghan Cowan, Saeed Maleki, Madan Musu-
vathi, Todd Mytkowicz, Jacob Nelson, and Olli Saarikivi. 2023. TACCL: Guid-
ing Collective Algorithm Synthesis using Communication Sketches. In 20th
USENIX Symposium on Networked Systems Design and Implementation, NSDI
2023, Boston, MA, April 17-19, 2023. USENIX Association, 593–612. https:
//www.usenix.org/conference/nsdi23/presentation/shah

[54] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Processing Systems 30: Annual Con-
ference on Neural Information Processing Systems 2017, December 4-9, 2017, Long
Beach, CA, USA. 5998–6008. https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

[55] Weitao Wang, Sushovan Das, Xinyu Crystal Wu, Zhuang Wang, Ang Chen, and
T. S. Eugene Ng. 2021. MXDAG: A Hybrid Abstraction for Cluster Applications.
CoRR abs/2107.07442 (2021). arXiv:2107.07442 https://arxiv.org/abs/2107.07442

[56] Weitao Wang, Masoud Moshref, Yuliang Li, Gautam Kumar, T. S. Eugene Ng,
Neal Cardwell, and Nandita Dukkipati. 2023. Poseidon: Efficient, Robust, and
Practical Datacenter CC via Deployable INT. In 20th USENIX Symposium on
Networked Systems Design and Implementation, NSDI 2023, Boston, MA, April
17-19, 2023. USENIX Association, 255–274. https://www.usenix.org/conference/
nsdi23/presentation/wang-weitao

[57] Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee, Muthian Sivathanu,
Nipun Kwatra, Zhenhua Han, Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu
Zhang, Fan Yang, and Lidong Zhou. 2018. Gandiva: Introspective Cluster Sched-
uling for Deep Learning. In 13th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2018, Carlsbad, CA, USA, October 8-10, 2018. USENIX As-
sociation, 595–610. https://www.usenix.org/conference/osdi18/presentation/xiao

[58] Wencong Xiao, Shiru Ren, Yong Li, Yang Zhang, Pengyang Hou, Zhi Li, Yihui
Feng, Wei Lin, and Yangqing Jia. 2020. AntMan: Dynamic Scaling on GPU

Clusters for Deep Learning. In 14th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2020, Virtual Event, November 4-6, 2020. USENIX
Association, 533–548. https://www.usenix.org/conference/osdi20/presentation/
xiao

[59] F. Frances Yao. 1980. Efficient Dynamic Programming Using Quadrangle In-
equalities. In Proceedings of the 12th Annual ACM Symposium on Theory of
Computing, April 28-30, 1980, Los Angeles, California, USA. ACM, 429–435.
https://doi.org/10.1145/800141.804691

[60] Hong Zhang, Kai Chen, Wei Bai, Dongsu Han, Chen Tian, Hao Wang, Haib-
ing Guan, and Ming Zhang. 2015. Guaranteeing deadlines for inter-datacenter
transfers. In Proceedings of the Tenth European Conference on Computer Sys-
tems, EuroSys 2015, Bordeaux, France, April 21-24, 2015. ACM, 20:1–20:14. https:
//doi.org/10.1145/2741948.2741957

[61] Hanyu Zhao, Zhenhua Han, Zhi Yang, Quanlu Zhang, Fan Yang, Lidong Zhou,
Mao Yang, Francis C. M. Lau, Yuqi Wang, Yifan Xiong, and Bin Wang. 2020.
HiveD: Sharing a GPU Cluster for Deep Learning with Guarantees. In 14th
USENIX Symposium on Operating Systems Design and Implementation, OSDI 2020,
Virtual Event, November 4-6, 2020. USENIX Association, 515–532. https://www.
usenix.org/conference/osdi20/presentation/zhao-hanyu

[62] Mark Zhao, Niket Agarwal, Aarti Basant, Bugra Gedik, Satadru Pan, Mustafa
Ozdal, Rakesh Komuravelli, Jerry Pan, Tianshu Bao, Haowei Lu, Sundaram
Narayanan, Jack Langman, Kevin Wilfong, Harsha Rastogi, Carole-Jean Wu,
Christos Kozyrakis, and Parik Pol. 2022. Understanding data storage and in-
gestion for large-scale deep recommendation model training: industrial prod-
uct. In ISCA ’22: The 49th Annual International Symposium on Computer Ar-
chitecture, New York, New York, USA, June 18 - 22, 2022. ACM, 1042–1057.
https://doi.org/10.1145/3470496.3533044

[63] Yihao Zhao, Yuanqiang Liu, Yanghua Peng, Yibo Zhu, Xuanzhe Liu, and Xin Jin.
2022. Multi-resource interleaving for deep learning training. In SIGCOMM ’22:
ACM SIGCOMM 2022 Conference, Amsterdam, The Netherlands, August 22 - 26,
2022. ACM, 428–440. https://doi.org/10.1145/3544216.3544224

[64] Pengfei Zheng, Rui Pan, Tarannum Khan, Shivaram Venkataraman, and Aditya
Akella. 2023. Shockwave: Fair and Efficient Cluster Scheduling for Dynamic Adap-
tation in Machine Learning. In 20th USENIX Symposium on Networked Systems De-
sign and Implementation, NSDI 2023, Boston, MA, April 17-19, 2023. USENIX Asso-
ciation, 703–723. https://www.usenix.org/conference/nsdi23/presentation/zheng

https://doi.org/10.1145/3341302.3342085
https://www.usenix.org/conference/nsdi23/presentation/liu-kefei
https://www.usenix.org/conference/nsdi23/presentation/liu-kefei
https://www.usenix.org/conference/nsdi23/presentation/liu-tianfeng
https://www.usenix.org/conference/nsdi23/presentation/liu-tianfeng
https://www.usenix.org/conference/nsdi20/presentation/mahajan
https://www.usenix.org/conference/nsdi20/presentation/mahajan
https://www.usenix.org/conference/nsdi23/presentation/mahajan
https://www.usenix.org/conference/nsdi23/presentation/mahajan
https://doi.org/10.1145/3563766.3564096
https://doi.org/10.1145/3563766.3564096
https://doi.org/10.1016/J.JPDC.2008.09.002
https://doi.org/10.1145/3341301.3359642
https://www.usenix.org/conference/nsdi24/presentation/rajasekaran
https://www.usenix.org/conference/nsdi24/presentation/rajasekaran
https://doi.org/10.1145/3563766.3564115
https://www.usenix.org/conference/nsdi23/presentation/shah
https://www.usenix.org/conference/nsdi23/presentation/shah
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://arxiv.org/abs/2107.07442
https://arxiv.org/abs/2107.07442
https://www.usenix.org/conference/nsdi23/presentation/wang-weitao
https://www.usenix.org/conference/nsdi23/presentation/wang-weitao
https://www.usenix.org/conference/osdi18/presentation/xiao
https://www.usenix.org/conference/osdi20/presentation/xiao
https://www.usenix.org/conference/osdi20/presentation/xiao
https://doi.org/10.1145/800141.804691
https://doi.org/10.1145/2741948.2741957
https://doi.org/10.1145/2741948.2741957
https://www.usenix.org/conference/osdi20/presentation/zhao-hanyu
https://www.usenix.org/conference/osdi20/presentation/zhao-hanyu
https://doi.org/10.1145/3470496.3533044
https://doi.org/10.1145/3544216.3544224
https://www.usenix.org/conference/nsdi23/presentation/zheng

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

APPENDIX

Appendices are supportingmaterial that has not been peer-reviewed.

A PROOF OF THEOREM 1

Below we prove Theorem 1 in §3.2:
lim |𝑇 |→∞

𝐹𝑇
𝑈𝑇

= 1,
where 𝑈𝑇 denotes the GPU utilization of the GPU cluster over

the time interval𝑇 , and 𝐹𝑇 represents the cumulative GPU intensity
of all jobs transmitted by a link within the time interval.

Proof. We define the function 𝑔 𝑗 (𝑡) for a job 𝑗 at time 𝑡 as
follows:

𝑔 𝑗 (𝑡) =
{
𝐼ℎ (𝑡) if ℎ(𝑡) = 𝑗,

0 if ℎ(𝑡) ≠ 𝑗 .

Let𝐺 𝑗,𝑇 =
∫
𝑡 ∈𝑇 𝑔 𝑗 (𝑡) 𝑑𝑡 . Hence, we have 𝐹𝑇 =

∑
𝑗∈J𝐺 𝑗,𝑇 , where

J is the set of all jobs.
Let 𝑆 𝑗 represent the time spent transmitting the data flow of job

𝑗 , yielding 𝐺 𝑗,𝑇 = 𝐼 𝑗𝑆 𝑗 . Assuming it takes 𝑡 𝑗 time to transmit one
iteration of job 𝑗 ’s data, 𝑆 𝑗 can cover 𝑁 𝑗 = 𝑆 𝑗/𝑡 𝑗 iterations (not
necessarily an integer).

For time duration𝑇 , let job 𝑗 complete computation for 𝑁 ′
𝑗
itera-

tions (also not necessarily an integer). As illustrated in Figure 26,
in a DLT job training scenario, computation and communication
for an iteration always occur in pairs, regardless of whether they
are overlapped. Irrespective of 𝑇 ’s starting point, the discrepancy
between the iterations for computation and communication within
𝑇 will not exceed 1 (whether it is +1 or -1). This leads us to the
following inequality:

𝑁 𝑗 − 1 ≤ 𝑁 ′𝑗 ≤ 𝑁 𝑗 + 1 (5)

By replacing 𝑁 𝑗 by 𝑆 𝑗/𝑡 𝑗 in Equation (5), we obtain:

𝑆 𝑗

𝑡 𝑗
− 1 ≤ 𝑁 ′𝑗 ≤

𝑆 𝑗

𝑡 𝑗
+ 1 (6)

Since the computation workload on the GPU cluster is equal to
the sum of the workloads of all jobs, we can express 𝑈𝑇 as follows:

𝑈𝑇 =
∑︁
𝑣∈V

𝐿𝑣 =
∑︁
𝑗∈J

𝑊𝑗𝑁
′
𝑗 (7)

where 𝐿𝑣 represents the computation workload of GPU 𝑣 in the
time duration𝑇 , and𝑊𝑗 represents the per-iteration GPU workload
of job 𝑗 , as defined in §3.1.

Substituting the bounds for 𝑁 ′
𝑗
from Inequality (6) into Equa-

tion (7), we have:∑︁
𝑗∈J

𝑊𝑗

(
𝑆 𝑗

𝑡 𝑗
− 1

)
≤ 𝑈𝑇 ≤

∑︁
𝑗∈J

𝑊𝑗

(
𝑆 𝑗

𝑡 𝑗
+ 1

)
(8)

Since
∑
𝑗∈J

𝑊𝑗𝑆 𝑗
𝑡 𝑗

=
∑
𝑗∈J 𝐼 𝑗𝑆 𝑗 =

∑
𝑗∈J𝐺 𝑗,𝑇 = 𝐹𝑇 , Inequality (8)

simplifies to:

𝐹𝑇 −
∑︁
𝑗∈J

𝑊𝑗 ≤ 𝑈𝑇 ≤ 𝐹𝑇 +
∑︁
𝑗∈J

𝑊𝑗 (9)

1 −
∑
𝑗∈J𝑊𝑗

𝑈𝑇
≤ 𝐹𝑇

𝑈𝑇
≤ 1 +

∑
𝑗∈J𝑊𝑗

𝑈𝑇
(10)

……
T

𝑁!" = 𝑁! − 1

……
T

……
T

Computation Communication

(a)

(b)

(c)

𝑁!" = 𝑁! + 1

𝑁! − 1 ≤ 𝑁!" ≤ 𝑁! + 1
……
T

Figure 26: Numerical relationship between 𝑁 𝑗 and 𝑁
′
𝑗
.

From Inequality (10), as |𝑇 | → ∞, 𝑈𝑇 tends to infinity because
there is always jobs running on GPUs. Therefore, we obtain:

1 = lim
|𝑇 |→∞

(
1 −

∑
𝑗 ∈J𝑊𝑗

𝑈𝑇

)
≤ lim
|𝑇 |→∞

𝐹𝑇

𝑈𝑇
≤ lim
|𝑇 |→∞

(
1 +

∑
𝑗 ∈J𝑊𝑗

𝑈𝑇

)
= 1 (11)

Equation (11) yields the result that lim |𝑇 |→∞
𝐹𝑇
𝑈𝑇

= 1.
□

B PROOF OF THEOREMS IN §4.3

Below we prove that there is a surjection from the K-Cut of a
topological order to the K-Cut of its corresponding DAG in §4.3.

Theorem 2. Any K-Cut of sequence {𝑎𝑛} is a valid K-Cut for the
directed acyclic graph (DAG) 𝐷 .

Proof. By the definition of a topological ordering, there cannot
exist an edge from 𝑎 𝑗 to 𝑎𝑖 for 𝑖 < 𝑗 . Consequently, for all 1 ≤
𝑖 < 𝑗 ≤ 𝐾 , there are no edges from nodes in 𝐵 𝑗 to nodes in 𝐵𝑖 .
Therefore, the partition 𝐵1, 𝐵2, . . . , 𝐵𝐾 forms a valid K-Cut of the
DAG 𝐷 . □

Theorem 3. For any valid K-Cut for 𝐷 , there exists at least one
topological order sequence {𝑎𝑛} with a K-Cut on it, s.t. this K-Cut of
{𝑎𝑛} is equivalent to K-Cut on 𝐷 .

Proof. Assume {𝑉1,𝑉2, . . . ,𝑉𝐾 } represents a K-Cut of 𝐷 . Define
the sub-DAG 𝐷𝑖 =< 𝑉𝑖 , 𝐸𝑖 >, where 𝐸𝑖 includes all edges with both
nodes in 𝑉𝑖 . Let 𝐵𝑖 = {𝑏𝑖,1, 𝑏𝑖,2, . . . , 𝑏𝑖, |𝑉𝑖 | } be a topological order of
𝐷𝑖 . According to the definition of a valid K-Cut for 𝐷 , there are no
edges in 𝐸𝐷 from any node in 𝐵𝑖 to any node in 𝐵 𝑗 for 𝑖 > 𝑗 . There-
fore, the concatenated sequence {𝑏1,1, 𝑏1,2, . . . , 𝑏1, |𝑉1 | , . . . , 𝑏𝐾,1, 𝑏𝐾,2,
. . . , 𝑏𝐾, |𝑉𝐾 | } forms a topological ordering of 𝐷 , and the partition
{𝐵1, 𝐵2, . . . , 𝐵𝐾 } is a K-Cut on it, equivalent to the K-Cut {𝑉1, . . . ,𝑉𝐾 }.

□

	Abstract
	1 INTRODUCTION
	2 BACKGROUND AND MOTIVATION
	2.1 Background: Multi-Tenant DLT Clusters
	2.2 Inter-Job Communication Contention Seriously Degrades GPU Utilization
	2.3 Goal: Optimizing GPU Utilization
	2.4 Optimizing GPU Utilization via Scheduling Inter-Job Communication Contention

	3 METHODOLOGY AND SYSTEM OVERVIEW
	3.1 Problem and Goal
	3.2 Deriving GPU Utilization Optimization to Flow Scheduling: A Single Link Case
	3.3 Extending to Networks: Crux Overview

	4 Crux DESIGN
	4.1 GPU Intensity-Based Path Selection
	4.2 Priority Assignment
	4.3 Priority Compression
	4.4 Effectiveness Validation

	5 IMPLEMENTATION
	6 EVALUATION
	6.1 Experiment Setup
	6.2 Real-World Evaluation
	6.3 Trace-based Simulation
	6.4 Working Together with Job Schedulers

	7 DISCUSSIONS
	7.1 Limitations in Crux Algorithm
	7.2 Job Fairness in Scheduling
	7.3 Adaptability to Other Topologies

	8 RELATED WORK
	9 CONCLUSION
	References
	A PROOF OF THEOREM 1
	B PROOF OF THEOREMS IN §4.3

